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Abstract. This paper studies a model of reputation-building in which the reputation of

a firm is treated as capital stock that accumulates by past investments, depreciates when

there is no investment, and has a persistent effect on future payoffs. The setting is a

discrete-time discounted stochastic game between a long-run firm and a sequence of short-

run buyers where the firm’s reputation is the state variable. Under a class of transition rules,

if actions are taken frequently enough, there is a unique stationary Markov equilibrium,

which is characterized by a reputation-building stage, a reputation-exploitation stage and

a possible reputation-absorbing stage. For low levels of reputation, the firm randomizes

between investing and not investing, and the buyers randomize between buying and not

buying. The firm always has incentive to build reputation even if the stock reaches the

lowest level. For high levels of reputation, the buyers buy with probability one and the firm

exploits the reputation by not investing. Reputation moves cyclically between these two

stages, so reputation is a long-run phenomenon. Under certain circumstances, there is an

extra stage, a reputation-absorbing stage. If the firm’s reputation is very low, the firm loses

the incentive to invest, thus reputation eventually declines to the lowest level which is an

absorbing state.

1. Introduction

Since the seminal work of Kreps and Wilson (1982) and Milgrom and Roberts (1982), it has

been well understood that reputation considerations are important in long-term relationships.

In this literature, reputation is captured by the belief of the uninformed party as to the type

of the informed party. Specifically, it is typically assumed that the informed party is of

two types, a “commitment” type and a “normal” type, where the commitment type is not

Date: November 11, 2015.

Acknowledgment : I am grateful to Srihari Govindan and Paulo Barelli for their guidance and encour-

agement. I also thank George J. Mailath, Marek Pycia, Stephan Lauermann and Heng Liu, as well as

seminar/conference participants at University of Rochester, Stony Brook International Conference on Game

Theory 2014, and Midwest Economic Theory Conference 2015 for helpful discussions and suggestions. All

errors are our own.

1



2 BINGCHAO HUANGFU

strategic and follows a pre-specified rule of behavior, with the behavior of the normal type

being the object of the analysis. The uninformed party does not know the type of the other

party and updates beliefs using past histories. We then say that the informed party has a

“reputation” (of being the commitment type) if the probability assigned to the commitment

type is not zero.

When actions can be observed, as soon as an opportunistic action that would never be

taken by the commitment type is observed, the reputation of being a commitment type

vanishes to zero by Bayesian updating and has no chance of bouncing back. When ac-

tions cannot be perfectly observed, even though opportunistic behavior does not totally ruin

reputation, the type is eventually learned, so reputation is again a short-term phenomenon

(Cripps, Mailath and Samuelson, 2007). However, in reality, reputation might be sustainable

in the long run, as illustrated by many successful reputation recovery stories.1 The evidence

from those stories is that reputation only gets tarnished rather than vanishing. Moreover,

its negative effect is felt through sales instead of prices, and reputation can be eventually re-

stored. For instance, in 2010, the safety recalls for brake and accelerator problems tarnished

Toyota’s high reputation ranking, and the reputation damage caused sale reduction (Shin,

Richardson, and Soluade, 2012). However, after three years of a gradual reputation-recovery

process, Toyota has bounced back to become one of the most highly regarded companies in

the U.S. by 2013.2

There are papers in the reputation literature that obtain reputation as a long-run phenom-

enon, but they resort to exogenous uncertainty such as replacement of types (Holmstrom,

1999; Mailath and Samuelson, 2001; Phelan, 2006; Ekmekci, Gossner and Wilson, 2012),

limited record of history (Liu and Skrzypacz, 2009; Liu, 2011; Monte, 2013) or information

censoring (Ekmekci, 2011). However, in many situations, reputation may be restored by a

firm’s ability to endogenously improve it, instead of the exogenous reasons mentioned above.

1Dietz and Gillespie (2012) present six case studies about The BBC, Siemens, Mattel, BAE Systems, Sev-

ern Trent and Toyota. Sharon Beder (2002) studies Nike’s successful reputation recovery from criticism over

its poor labour and environmental standards. See also the good reaction to social media crisis by Kitchenaid,

DKNY and Burger King (http://oursocialtimes.com/6-examples-of-social-media-crises-what-can-we-learn/).
2 2008 - 2014 Harris Poll Reputation Quotient (RQ), from Harris Interactive. The ranking of Toyota

among the most visible companies in the U.S. from 2008 to 2014 is 10th, 20th, 20th, 43rd, 31st, 19th and

21st.
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For example, Toyota’s recovery from the lost reputation was due to its program of thorough

reforms such as new safety and quality control systems. Similarly, Siemens overhauled its

structures, leadership, processes and culture after the accusation of its systematic bribery in

2006.

Recent papers capture the idea that a firm’s reputation is accumulated by past efforts.

In Board and Meyer-ter-Vehn (2013) and Dilme (2012), reputation is treated as a belief

of product quality that can be changed by a firm’s past investments. Faced with new

information, reputation goes through discontinuous jumps, relative to continuous drifts when

there is no new information. Furthermore, reputation only brings a premium to the price

since the price is the expected quality of the product and the buyers have unit demand

for the product. However, the reputation stories mentioned before suggest that reputation

depreciates instead of jumping discontinuously, and its impact is mainly felt through sales

instead of prices. In Halac and Prat (2014), firm’s reputation of monitoring the workers’

performance is modeled as a belief of the quality of managerial practice, an intangible and

imperfectly observable asset. Upon the arrival of a perfect good news about the firm’s

quality, reputation displays discontinuous jumps. Huang and Li (2014) modeled mutual

fund’s reputation as the market’s belief whether the fund has profitable information that can

be costly acquired but may depreciate. Unlike Board and Meyer-ter-Vehn (2013), manager’s

reputation either goes up or down smoothly in each period. Bohren (2011) studies a class of

stochastic games in which the actions of a long-run player have a persistent effect on future

payoffs. Past effort is considered as the source of reputation, which influences the short-run

buyers’ willingness to buy. However, Bohren (2011) has little power for explaining long-run

reputation effects. There is a key assumption that there are absorbing states in the boundary,

so reputation can be permanent only when it reaches the boundary with zero probability, but

it is not clear when this holds.3 If reputation starts from the boundary points, the long-run

player loses the incentives to build reputation, thus reputation is a short-run phenomenon.

Following the idea of action persistence in Bohren (2011), this paper models reputation as

capital stock that is smoothly accumulated by investment and depreciates when there is no

investment. The following are four examples in which reputation behaves like capital stock.

3For the unbounded state space, the assumption says that the state variable cannot pull the state back to

a region with non-negligible incentives fast enough when the state variable becomes very large or very small.
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(1) High quality can be treated as reputation of firms. For example, Toyota enjoyed a high

reputation because it had made continuous R&D to guarantee reliable vehicles. The

recalls in 2010 were due to a design flaw, which had nothing to do with its manufacturing

stock.4 It seems plausible to consider this stock as the main determinant of Toyota’s

reputation, so reputation would only suffer a decline instead of a total ruin after the

design flaw.

(2) Goodwill is an intangible asset which represents the extra value ascribed to a company by

virtue of its brand and reputation.5 Goodwill is represented by the value of a company’s

brand name, solid customer base, good employee relations and any patents or proprietary

technology, which produce income in the future. In order to acquire a high goodwill,

a company needs to make consistent investments such as advertising, developing the

workforce, and increasing the customer base.

(3) Human capital stock is treated as a worker’s reputation (Camargo and Pastorino, 2001).

A worker receives costly on-the-job training and learning-by-doing to accumulate human

capital, which influences his or her future productivity and changes the experience in the

future labor market.

(4) Knowledge stock can be considered as the reputation of the economy in the endogenous

growth models (Romer, 1986, 1989; Jones and Manuelli, 1990; King and Rebelo, 1990).

Higher accumulation of knowledge will enhance the future productivity of the economy.

Governments avoid short-sighted high taxation because it hurts the production of knowl-

edge and hence long-run economic growth.

By modeling reputation as capital stock that is endogenously influenced by past invest-

ments, this paper delivers reputation cycles that persist in the long run, and is characterized

by phases of reputation building and exploitation. This is in contrast with the temporary

reputation effects observed in traditional belief-based models as well as in Bohren (2011).

Furthermore, prices are implicitly fixed, so reputation has an impact only on sales, which

fits several reputation stories mentioned before.

4http://news-releases.uiowa.edu/2010/february/020510toyota-researcher.html.
5The goodwill, the bad and the ugly, Economist, Jan 22nd 2009. Indeed, goodwill is added to the combined

entity’s balance sheet during mergers and acquisitions.
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This paper relates to the large literature on existence of stationary equilibria in discrete-

time discounted stochastic games which started with Shapley (1953) and is still active (See

Levy and McLennan (2015) for further reference). This paper studies a specific discrete-time

discounted stochastic game and characterizes the unique equilibrium among all stationary

Markov equilibria if actions are taken frequently enough, given any fixed discount rate.

Focusing on perfect public equilibria (PPE) other than stationary equilibria, several folk

theorems characterize the equilibrium payoffs for discrete-time discounted stochastic games

as players are patient enough.6 Pȩski and Wiseman (2014, 2015) study discrete-time dis-

counted dynamic stochastic games where transition rules depend on the length of the period,

and characterize the PPE payoffs if the length of the period shrinks, given fixed discount

rate. Related to Pȩski and Wiseman (2014), this paper studies transition rules that depend

on the length of the period: the magnitude of the state transition is proportional to the

length of the period.

Formally, we consider a discrete-time discounted stochastic game between a long-run player

(henceforth firm) and a sequence of short-run players (henceforth buyers). In each period,

a buyer decides whether to buy the firm’s product or not, and the firm can either invest in

its reputation or not. Period payoffs depend on the current actions of the players and on

the reputation stock, which is the state variable. The reputation stock evolves according

to a transition rule that depends on the firm’s decisions. The firm discounts the future

with a constant discount factor. Restricting to stationary Markov equilibrium, we study the

dynamics of reputation under different transition rules. In particular, we determine when

reputation is not short-lived.

We consider transition rules that are “local” in order to capture the spirit that reputation

accumulates and depreciates smoothly as capital stock, instead of presenting discontinuous

jumps as a belief. Heuristically, we do not allow for drastic jumps in the stock as a result of

investment or lack of it, which in this model means that the next period’s stock is at most one

unit apart from the current stock. Two types of rules can illustrate the qualitative properties

of all “local” transition rules. The first type is called one-step transition rules, in which only

the firm has the power of controlling the reputation in the following way: investing leads

to a one-step increase while not investing causes a one-step depreciation of reputation, with

6 See Dutta (1995), Fudenberg and Yamamoto (2011), and Hörner, Sugaya, Takahashi, and Vieille (2011).
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the possibilities that investing may cause one-step depreciation and not investing results in

one-step increase with small probability.

The second type is called an augmented one-step transition rule, in which both the firm

and the buyers can influence the reputation. If the buyers buy, this rule is the same as

the one-step transition rule without noises. However, if the buyers choose not to buy, the

firm has no chance of building reputation and the reputation remains the same. That the

firm should control the stock is obvious, because it is the result of investments by the firm.

However, we also allow the buyers to influence it because of practical considerations. A

firm’s word-of-mouth advertisement today may not effectively improve its reputation if the

buyers do not buy, experience the good and give high customer ratings to influence the

decision of future buyers. Workers have no chance of learning-by-doing without being hired

in the first place, likewise an economy cannot invest in knowledge if the public does not

produce any consumption good. Furthermore, in order to qualitatively investigate the role

that the buyers play in determining the reputation, it is enough to investigate the augmented

one step transition rule in which the buyers are given the maximal power of influencing the

reputation because they can take away all incentives for the firm to build reputation if they

choose not to buy. Once we figure out how this maximal power changes the equilibrium

behavior, equilibrium behavior under other transition rules that give intermediate power to

the buyers will yield intermediate results.

Finally, to facilitate a comparison with the belief-based reputation literature, we also

study lower-bound transition rules, in which it is possible for reputation stock to jump

to the lower-bound if the firm does not invest. Among all rules that the buyers have no

power of controlling the reputation, one step transition rules and lower-bound transition

rules are two extreme cases with respect to the downward transition. Therefore, equilibrium

behavior under these two transition rules sheds light on the equilibrium behavior in any

other transition rule with intermediate downward transition.

Under any of the transition rules described above, when actions are taken frequently

enough, there is a unique stationary Markov equilibrium, which is characterized by a rep-

utation building stage, a reputation-exploitation stage and a possible reputation-absorbing

stage. When reputation stock is lower than a threshold, there is a reputation-building stage

in which players randomize, and the firm always has incentive to invest even if the stock
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reaches the lowest level. For high levels of reputation which are at or above a threshold7,

the buyers buy for sure and the firm exploits its reputation by not investing. Therefore,

the reputation stock goes up and down (as players randomize) as long as it is below the

threshold. Once it is above the threshold, it goes back down as the firm does not invest.

This process repeats ad infinitum. However, if the threshold is too high, then there is an

extra stage, a reputation-absorbing stage: for very low levels of reputation, the firm loses

the incentives to invest, thus reputation eventually declines to the lowest level which is an

absorbing state. In all, if the threshold is low enough, reputation keeps moving back and

forth and never stays at a certain state. Therefore, reputation is a long-run phenomenon,

which fits the successful reputation recovery stories including Toyota’s story of recall and its

subsequent come back. If the threshold is high enough, the firm never has the incentive to

build reputation and reputation will be finally stagnant at the lowest level.

Comparison with Bohren (2011). It is important to compare this paper to Bohren

(2011), because both papers model reputation in a stochastic game framework. We analyze

a discrete-time model with a product-choice stage game and characterize a unique stationary

Markov equilibrium when actions are taken frequently enough. There are some key differ-

ences between the two papers. (i) Permanent reputation. In Bohren (2011), there is a key

assumption that there are absorbing states at the boundary of the state space to guarantee

the uniqueness of the Markov equilibrium, and reputation can be permanent only when the

state reaches the boundary with zero probability, but it is not clear when this holds. When

the state starts from the boundary, the long-run player loses the incentive to invest and repu-

tation is stagnant. In our model, we do not need this assumption and explicitly characterize

the necessary and sufficient condition for the existence of an absorbing state. If the firm’s

investment cost is low enough and the firm is patient enough, there is no absorbing state

and reputation is a permanent phenomenon. (ii) Brownian signal. In order to guarantee the

existence of a Markov equilibrium, Bohren (2011) requires the imperfect signal to be Brow-

nian and the volatility of the state variable to be bounded away from zero at interior points.

Having infinite variation on any small time interval, Brownian motion might be suitable to

describe the path of prices in the market. However, reputation, as a capital shock in this

7The threshold is determined by firm’s discount factor, firm’s investment cost and transition rules. See

Corollary 3.1.
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paper, is less likely to display infinite variation as in a Brownian motion. Therefore, the

assumption of smooth transition rules in the sense that reputation moves at most one-step

up or down seems more appropriate. (iii) Bohren (2011) can identify the condition to guar-

antee that the only Perfect Public Equilibrium (PPE) is Markovian by combing frequent

actions with noisy Brownian information. No such result is available in our model. We show

the uniqueness of equilibrium among all Markov equilibria and there may be non-Markovian

equilibria.8 In all, this paper provides a rationale for permanent reputation in a stochastic

game setting that uses the typical product-choice stage game and hence is easily compara-

ble to he belief-based reputation literature. Moreover, unlike Bohren (2011) and consistent

with the idea that reputation is built smoothly as capital stock. However, this comes at a

cost because we only focus on the uniqueness of stationary Markov equilibrium, and Bohren

(2011) has the uniqueness of all PPE.

2. Model

We study a discrete-time discounted stochastic game where a long-run player (henceforth

the firm) plays against an infinite sequence of short-run players (henceforth the buyers).

Time is discrete and indexed by t = 0,∆, 2∆ . . . ,∞. ∆ is the length of each period. In later

sections, we will analyze the case where ∆ is small and also the limit as ∆→ 0. A buyer who

arrives at time t plays a stage-game with the firm, then exits and does not come back. The

firm discounts future payoffs by δ = e−r∆ and maximizes the expected sum of discounted

payoffs. The buyers only care about their stage-game payoffs.

Reputation of the firm is modeled as a state variable X, which affects only the stage-game

payoffs of the buyers. The state space X∆ is {0,∆, 2∆, . . .}, which means that the shift of

reputation X is proportional to the time interval ∆. This captures the idea that reputation

building (or milking) is a smooth process if we restrict the maximal steps of reputation shift

to be bounded in each period.

The stage game is a modified version of product-choice game in which the buyers’ stage-

game payoff depends on firm’s reputation. In each period, the firm and a buyer move

simultaneously. There are two pure actions for the firm: I and NI, which represent investing

8In our model, if the volatility of the state variable is bounded away from zero as actions are taken

frequently enough, it is not clear whether there is non-Markovian equilibrium or not.



STOCHASTIC REPUTATION CYCLES 9

and not investing. There are two pure actions for the buyer: B and NB, which represent

buying and not buying.

The following is an example of a stage-game payoff matrix that illustrates a product-choice

game that we will study. The row player is the firm and the column player is the buyer.

B NB

I 1,λ+ (1− λ)X −1
2
, 0

NI 2,−λ+ (1− λ)X 0,0

Notice the following properties of the firm’s stage-game payoff. (i) The firm’s stage-game

payoff is not directly influenced by reputation X.9 (ii) The firm is better off if the buyer

buys. (iii) It is a dominant strategy for the firm not to invest. The firm’s investment cost

is 1 if the buyer buys and 1
2

if the buyer does not buy. Therefore, the expected investment

cost is increasing in the buyer’s probability of buying, which is called submodularity. (iv)

The firm prefers (I, B) to (NI,NB), which means that the firms is better off if committing

to investing is possible. Next, we describe four properties of the buyer’s stage-game payoff.

(i) The buyer’s stage-game payoff is increasing in X if the buyer buys, which means that

reputation is valuable for the buyer. (ii) The buyer is better off if the firm invests. (iii) The

buyer prefers to buy if the firm invests, and gets the same payoff 0 if the firm does not invest.

(iv) If X ≥ X∗ = λ
1−λ , it is a weakly dominant strategy for the buyers to buy. If X < X∗,

then there is a probability of investing for the firm that makes the buyer indifferent between

B and NB, which is denoted as a∗(X) = 1
2
− 1−λ

2λ
X.

Assumption 2.1-2.5 make the above statements formal. The firm’s stage-game payoff is

g1 : {I, NI} × {B,NB} 7→ R. The buyers’ stage-game payoffs also depend on the state

variable X ∈ R+: g2 : {I, NI} × {B,NB} × R+ 7→ R.

Assumption 2.1: g1(NI,B) ≥ g1(I, B), g1(NI,NB) ≥ g1(I,NB); g1(I, B) > g1(I,NB),

g1(NI,B) > g1(NI,NB); g1(I, B) > g1(NI,NB).

Assumption 2.2: g1(NI,B)− g1(I, B) > g1(NI,NB)− g1(I,NB).

9Justified by several real-world reputation stories as we saw in the introduction, this paper models the

impact of reputation on sales instead of prices, which may directly influence the firm’s payoff. A model that

captures sales and prices is left for future research.
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Assumptions 2.1-2.2 describe the stage-game payoff of the firm. Assumption 2.1 tells us

that in a stage-game, the firm prefers not to invest and the firm is better off if the buyer buys.

Moreover, the firm prefers cooperation (I, B) to noncooperation (NI,NB), which means that

the firm has an incentive to build reputation. Assumption 2.2 is the submodularity of the

firm’s payoff, which characterizes the conflict between the firm and the buyer.

Assumption 2.3: g2(I, B,X) > g2(NI,B,X), g2(I, B,X) > g2(I,NB,X) for any X.

g2(I,NB) = g2(NI,NB).

Assumption 2.4: g2(I, B,X) and g2(NI,B,X) are strictly increasing in X.

Assumption 2.5: There is X∗ > 0 such that X ≥ X∗ imples g2(NI,B,X) ≥ g2(NI,NB)

and X < X∗ implies g2(NI,B,X) < g2(NI,NB).

Assumptions 2.3-2.5 describe the stage-game payoff of the buyer. Assumption 2.3 tells us

that the buyer prefers to buy if the firm invests, and gets the same payoff if the firm does not

invest. Moreover, the buyer wants the firm to invest. Assumption 2.4 means that reputation

is valuable for the buyer, because higher reputation yields higher payoff for the buyer if the

buyer buys. Assumption 2.5 tells us that if X ≥ X∗, it is a weakly dominant strategy for the

buyer to buy, which means that the buyer prefer to buy independently of the firm’s current

behavior if the firm has accumulated enough reputation in the past. If X < X∗, then there

is a probability of investing for the firm that makes the buyers indifferent between B and

NB:

a∗(X) ≡ g2(NI,NB)− g2(NI,B,X)

g2(I, B,X)− g2(NI,B,X)
.

Observe that a∗(X) is decreasing in X.

Let a ∈ [0, 1] denote the mixed strategy of the firm: the probability of playing I. Let

y ∈ [0, 1] denote the mixed strategy of the buyer: the probability of playing B. For a given

pair of mixed actions (a, y), let g1(a, y) and g2(a, y,X) denote the expected stage payoffs of

the firm and the buyers.

Assume that the firm and the buyers can observe all the past history: the past actions of

the long-run firm and the short-run buyers, and the state variable X.

Finally, we specify the transition rules of state variable X, which characterize how the

current actions have a persistent impact on the future payoffs of the buyers. We consider
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Markov transition rules represented by a transition probability

P : {I,NI} × {B,NB} ×X∆ 7→ ∆(X∆).

Given the firm’s action f ∈ {I,NI}, the buyer’s action b ∈ {B,NB} and the current state

variable X, P (f, b,X) is the probability of the state X ′ in the next period. Given mixed

strategy (a, y) and the current state X, the probability of next state X ′ is

P (a, y,X) = ayP (I, B,X)+a(1−y)P (I,NB,X)+(1−a)yP (NI,B,X)+(1−a)(1−y)P (NI,NB,X).

3. Equilibrium Analysis

We consider stationary Markov Equilibria in which both the firm and the buyers play

stationary Markov strategies. Denote (a(X), y(X)) as the mixed actions of the firm and the

buyers which only depend on the current state X. Define V (X)10 as the firm’s continuation

value at state X.

Definition 3.1: (a(X), y(X), V (X)) is a stationary Markov Equilibrium if for all X,

V (X) = max
a∈[0,1]

(1− δ)g1(a, y(X)) + δEPV (X ′).

a(X) ∈ argmax
a∈[0,1]

(1− δ)g1(a, y(X)) + δEPV (X ′).

y(X) ∈ argmax
y∈[0,1]

g2(a(X), y,X),

s.t. P = P (a, y,X).

We are interested in two kinds of stationary Markov equilibria: non-absorbing equilibria

and quasi-absorbing equilibria. In a non-absorbing equilibrium, the buyers buy at state 0:

y(0) > 0, the firm always has incentive to invest at state 0: a(0) > 0 and there is no absorbing

state. Moreover, there are two reputation stages as follows:

Define K as the smallest integer satisfying K∆ > X∗, that is K = bX∗

∆
c+ 1.

(1) Reputation-building stage: 0 ≤ k ≤ K − 1. The firm invests with positive probability:

a(k∆) ≥ a∗(k∆), and the buyers buy with positive probability y(k∆) > 0.

(2) Reputation-exploitation stage: k ≥ K. The firm does not invest and the buyers buy, i.e.

y(k∆) = 1 and a(k∆) = 0.

10 V (X) is bounded above by g1(NI,B), which is the highest stage payoff that the firm can get, so the

transversality condition is satisfied.
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In the quasi-absorbing equilibrium, the buyers do not buy at state 0: y(0) = 0, the firm does

not invest at state 0: a(0) = 0.11 There are three reputation stages. There exists an integer

K̄ > 0 such that

(1) Reputation-absorbing stage: 0 ≤ k ≤ K − K̄ − 1. The firm does not invest and the

buyers do not buy: a(k∆) = y(k∆) = 0.

(2) Reputation-building stage: K − K̄ ≤ k ≤ K − 1. The firm invests with positive proba-

bility: a(k∆) ≥ a∗(k∆), and the buyers buy with positive probability y(k∆) > 0.

(3) Reputation-exploitation stage: k ≥ K. The firm does not invest and the buyers buy, i.e.

y(k∆) = 1 and a(k∆) = 0.

3.1. One-step transition rules. In this section, we focus on a specific class of transition

rules: one-step transition rules, which capture the ideas that reputation accumulates and

depreciates smoothly, as the maximal step of reputation shift is ∆. Moreover, only the firm

has the power of controlling reputation transitions.

(1) If the firm invests, then the probability that X ′ = X + ∆ is 1 − q and the probability

that X ′ = max{X −∆, 0} is q:

P (I,X) =

 1− q X ′ = X + ∆

q X ′ = max{X −∆, 0}.

(2) If the firm does not invest, then the probability that X ′ = max(X −∆, 0) is 1 − p and

the probability that X ′ = X + ∆ is p:

P (NI,X) =

 1− p X ′ = max{X −∆, 0}

p X ′ = X + ∆.

(3) P (a,X) = aP (I,X) + (1− a)P (NI,X).

Given that the firm does not invest, p is the probability of reputation up-shift. Given that

the firm invests, q is the probability of reputation down-shift. If p = q = 0, the one-step

transition rule is deterministic: investing leads to high reputation and not investing leads

to lower reputation. In the deterministic case, the marginal benefit of investing reaches the

110 is an absorbing state if and only if not investing cannot lead to an increase of reputation. For example,

in the one-step transition rules described below, 0 is an absorbing state if and only if p = 0. If p is small

enough, the probability of escaping from state 0 is small. That is the reason why we call this kind of

equilibrium quasi-absorbing equilibrium.
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highest level. Higher p and q, considered as a measure of shocks, implies lower benefit of

investing.

Define three payoff parameters A, Apq and γ as below:

A =
g1(1, 1)− g1(1, 0)

g1(0, 1)− g1(0, 0)
, Apq =

(1− p)A− q
1− q − Ap

, γ =
g1(0, 0)− g1(1, 0)

g1(0, 1)− g1(0, 0)
.

The parameter A captures the submodularity of the firm’s payoffs. Higher A means a low

degree of submodularity, thus a higher intensity of conflict between the firm and the buyers.

Apq measures both the shocks p and q as well as submodularity. The parameter γ captures

the investment cost if the buyer does not buy. By Assumption 2.1, γ < A. By Assumption

3.1, Apq ∈ (0, 1).

Assumption 3.1: p+ q < 1, q
1−p < A < 1−q+q2

1−pq .

Assumption 3.1 holds for small p and q. A > q
1−p guarantees that the buyers can provide

enough incentives for the firm to invest. p + q < 1 implies that investing will leads to high

probability of reputation up-shift than not investing. A < 1−q+q2

1−pq is a technical condition to

guarantee the uniqueness of the stationary Markov equilibrium.

Theorem 3.1 characterizes the equilibrium behavior under one-step transition rules if ac-

tions are taken frequently enough.

Theorem 3.1. Under Assumptions 2.1-2.5, 3.1 and one-step transition rules, for each p ≥

0, q ≥ 0, there exists a ∆̄pq > 0 such that for all ∆ < ∆̄pq, any stationary Markov equilibrium

is characterized as follows. There exist K̄pq > 0 and Mpq > 0 s.t.

(1) If K ≤ K̄pq, the stationary Markov equilibrium is a non-absorbing equilibrium.

(2) If K ≥ K̄pq + 1, the stationary Markov equilibrium is a quasi-absorbing equilibrium.

(3) If max(K − K̄pq, 0) +Mpq ≤ k ≤ K − 1, the firm plays mixed strategy a(k∆) = a∗(k∆).

The buyers play mixed strategy y(k∆) ∈ (0, 1) given by y(k∆) ≡ zk − γ
1−A , where zk+2 =

1
δ
(1− Apq)zk+1 + Apqzk.

Moreover, if p = q = 0, then the stationary Markov equilibrium is unique and M00 = 0.12

Theorem 3.1 states that the stationary Markov equilibrium can only be one of the two

kinds of equilibria: non-absorbing equilibria and quasi-absorbing equilibria.

12If p = q = 0 and K ≤ K̄pq, then for state k = 1, there are two possibilities. Define ε = 1
2δ (1 −

A +
√

(1−A)2 + 4Aδ2). If εK(1 + ε) + (−Aε )K(1 − A
ε ) > (ε + A

ε )(1 + ε − A
ε ), then a(k∆) = a∗(k∆) and

y(k∆) ∈ (0, 1). Otherwise, a(k∆) = y(k∆) = 1.
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If it is easy to reach the state in which the buyers buy for sure (K ≤ K̄pq), then reputation

cycle is characterized by a reputation-building stage and a reputation-exploitation stage. In

the latter stage when reputation is high enough, the buyers’ dominant strategies are to buy.

Therefore, the buyers cannot reward the firm by increasing the probability of buying any

more, thus there is no incentive for the firm to build reputation any more. In the former

stage when the reputation is low, the buyers randomize between buying or not buying in

order to make the firm indifferent between investing and not investing. The firm also needs

to randomize in such a way (a(k∆) = a∗(k∆)) that so that the buyers are indifferent between

buying or not buying. The firm never loses the incentive to invest because reputation can

be exploited in the near future. Even if the reputation hits the lower bound 0, the firm still

invests with positive probability so that reputation will never be trapped at the lower bound

0.

On the other hand, if it is difficult to reach the state in which the buyers buy for sure

(K ≥ K̄pq + 1), then there is one extra stage: a reputation-absorbing stage. For low states,

the firm loses the incentive to invest because the long-term benefit of building a reputation

is dominated by the short-term cost of investing. As a result, the buyers’ best choice are not

to buy. Reputation moves down stochastically to state 0. For intermediate states, the firm

builds reputation with positive probability and reputation can move upward or downward.

After numerous steps of upward shifts, reputation gets to the reputation-exploitation stage,

in which the firm exploits the reputation since there is no need to build more reputation, and

go downward back to the reputation-building stage. If p = 0, then after a long sequence of

downward drifts, reputation reaches the reputation-absorbing stage and thus continue to go

down all the way to the absorbing state 0. In all, the reputation stock will eventually reach

the absorbing state 0 and stay there forever, thus reputation is only a short-run phenomenon.

If p > 0, then not investing may lead to a one-step increases of reputation with probability

p, thus there is a chance that reputation comes back from the reputation-absorbing stage to

the reputation-building stage.

Given p = q = 0, there is a unique stationary Markov equilibrium, which is completely

characterized by Theorem 3.1. If p = q = 0 does not hold, then we consider the first

state of reputation-building stage: X = max(K − K̄pq, 0)∆. If the state is away from

the first state: X ≥ (max(K − K̄pq, 0) + Mpq)∆, then there is a characterization of the



STOCHASTIC REPUTATION CYCLES 15

equilibrium: both the buyers and the firm play strictly mixed strategies. However, there is

no characterization of the equilibrium behavior around the first state: max(K − K̄pq, 0)∆ ≤

X ≤ (max(K−K̄pq, 0)+Mpq)∆, thus the uniqueness of the stationary Markov equilibrium is

not guaranteed. We deal with this issue in Theorem 3.2 below, which shows that Mpq∆→ 0

as ∆→ 0, thus the limiting equilibrium is unique at X = max(K − K̄pq, 0)∆.

3.2. The Limiting Equilibrium: ∆ → 0. It is useful to consider the limiting equilib-

rium,13 when ∆ → 0 because we can present an analytic solution with clearer expressions

than the non-limiting result. Therefore, we can do a thorough analysis of the equilibrium

behavior, as well as comparative statics in order to check how the equilibrium can be im-

pacted by the parameters. Furthermore, we can analyze the condition which determines the

existence of an absorbing state.

Theorem 3.2 describes the limiting equilibrium behavior as ∆→ 0. Define (a(X), y(X), V (X)) ≡

lim∆→0,k∆→X(a(k∆), y(k∆), V (k∆)). Define y∗(X) ≡ e−r
1−A

1−2q+(1−2p)A
(X∗−X)(1 + γ

1−A) − γ
1−A ,

an exponentially increasing function which will be shown as the buyers’ equilibrium behavior.

Define the limit of the threshold K̄pq∆ as

X̄pq ≡
1

r
log(

1− 2q + (1− 2p)A

2(1− p− q)
1− A+ γ

γ
)
1− 2q + (1− 2p)A

1− A
.

Theorem 3.2. Under Assumptions 2.1-2.5, 3.1 and one-step transition rules, the unique

stationary Markov equilibrium in the limit as ∆ → 0 exists and the equilibrium strategy is

described as follows:

(1) If X∗ ≤ X̄pq, then the equilibrium is a non-absorbing equilibrium:

(a(X), y(X)) =

 (a∗(X), y∗(X)) 0 < X < X∗

(0, 1) X ≥ X∗.

(2) If X∗ > X̄pq, then the equilibrium is a quasi-absorbing equilibrium:

(a(X), y(X)) =


(0, 0) 0 < X < X∗ − X̄pq

(a∗(X), y∗(X)) X∗ − X̄pq < X < X∗

(0, 1) X ≥ X∗.

13The limiting equilibrium is the limit of any sequence of equilibria with ∆ > 0, as ∆→ 0.
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Consider the equilibrium behavior in the reputation-building stage (a(X) = a∗(X)). As

reputation X increases, the buyers raise the probability of buying y(X) to make the firm

randomize between investing and not investing; y′(X), the growth rate of y(X), also increases

since the buyers need to increase the firm’s benefit of investing to match with the larger

investment cost (due to submodularity); the probability of investing a(X) = a∗(X) declines

since it is easier for the firm to make the buyers indifferent between buying and not buying.

In the quasi-absorbing equilibrium (X∗ > X̄pq), y(X) is not continuous at the X∗ − X̄pq,

the threshold between the reputation-absorbing stage and the reputation-building stage.

Actually, y(X∗ − X̄pq) does not exist since the variation of y(k∆) does not vanish as k∆→

X∗ − X̄pq and ∆→ 0. As a sequence, the value function V (X) is not “smoothly pasted” at

X∗ − X̄pq, as y(X) is not continuous at X∗ − X̄pq. The value function V (X) is “smoothly

pasted” at X∗, as y(X) is continuous at X∗.14

Corollary 3.3. Under Assumptions 2.1-2.5, 3.1 and one-step transition rules,

(1) X̄pq is decreasing in (r, A−1, γ, p, q).

(2) y(X) is non-increasing in (r, A−1, γ, p, q) for any X.

(3) V (X) is non-increasing in (r, A−1, γ, p, q) for any X.

Corollary 3.3 presents comparative-statics analysis in order to derive some testable impli-

cations from the model. First, we study the impact of payoff parameters A, b and γ on the

equilibrium behavior. In the reputation-building stage, the buyers are less likely to buy the

product (smaller y(X)), if the firm cares less about future (larger r), the conflict between

the firm and the buyers becomes more serious (larger A−1) and the investment cost increases

(larger γ). All the above changes of parameters weaken the incentives for the firm to invest.

In order to compensate the weakening of incentives, the buyers have to provide more incen-

tive by raising the growth rate of y(X). Because y(X) reaches 1 at a given threshold X∗,

a high growth rate in y(X) implies a lower y(X) at each given X. Consequently, larger (r,

A−1, γ) imply lower continuation value V (X) for each X since the buyer are less likely to

buy (lower y(X)). Larger (r, A−1, γ) also imply smaller X̄pq, which means that it is more

likely that the firm stops investing. In all, higher r, A−1 and γ make it more difficult for

firm to build reputation.

14In Appendix B, we show that at X = X∗, V ′(X+) = V ′(X−) = r(1−A+γ)
2(1−p−q) g1(0, 1). At X = X∗ − X̄pq,

V ′(X+) = r(1−A+γ)
2(1−p−q) g1(0, 1)y(X) > 0 = V ′(X−).
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Next, consider the impact of noises p and q on the equilibrium behavior. Corallary 3.1 says

that the more noisy the transition (higher p and q ) is, the less likely the buyers are to buy

(lower y(X)). Intuitively, as p and q becomes larger, the incentive in the future is weakened

because an one-time no investment causes the reputation to increase with probability p

rather than a depreciation of reputation for sure, and an one-time investment decreases the

reputation with probability q rather than an increase of reputation for sure. Therefore, the

buyers need to compensate the weakening of incentive by increasing the growth rate of y(X).

Since y(X) reaches 1 at X∗, a higher growth rate leads to a lower level of y(X) in each state

X < X∗. Furthermore, larger p and q implies smaller X̄pq, which means that it is more likely

that the firm ceases to invest. In all, higher p and q make it more difficult for firm to build

reputation.

4. Extensions

4.1. Lower-bound Transition Rules. The lower bound of the state space X∆ is 0. In

lower-bound transition rules, the domain of next state X ′ is either X + ∆ or 0.

(1) If the firm invests, then the probability that the next state X ′ = X + ∆ is 1− q and the

probability that X ′ = 0 is q:

P (I,X) =

 1− q X ′ = X + ∆

q X ′ = 0.

(2) If the firm does not invest, then the probability that X ′ = 0 is 1− p and the probability

that X ′ = X + ∆ is p:

P (NI,X) =

 1− p X ′ = 0

p X ′ = X + ∆.

Assumption 4.1: p+ q < 1.

Assumption 4.2: δ > 1−A+γ
1−q−pA .

Assumption 4.1 tells us that investing increases reputation stock with a higher probability

than not investing: 1 − q > p, and not investing decreases reputation stock with a higher

probability than investing: 1−p > q. Assumption 4.2 holds for high discount factor δ, small

noises p and q, small degree of conflict (large A), and small investment cost γ. Observe that

Assumptions 4.1-4.2 allow for a wide range of noises and discount factors.
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Theorem 4.1 characterizes the reputation cycle under lower-bound transition rules. The

equilibrium results work for all fixed time intervals ∆ and high discount factors δ. The

unique stationary Markov equilibrium is a non-absorbing equilibrium, characterized by a

reputation cycle with a reputation-building stage and a reputation-exploitation stage. In

the former stage, the buyers buy with increasing probability with respect to reputation to

provide the firm with the incentives to invest. The firm plays a mixed strategy so that the

buyers are indifferent between buying and not buying. The result of a bad outcome is a high

probability to ruin reputation to the lowest level. After the ruin, the firm starts over and

continues to build reputation. In the later stage, it is a dominant strategy for the buyers to

buy. Therefore, the buyers can not reward the firm, so there is no incentive for the firm to

build reputation any more. For high discount factors, there is no absorbing state in which

firm does not invest and buyers do not buy, thus reputation is a long-run phenomenon.

Theorem 4.1. Under Assumptions 2.1-2.5, 4.1-4.2 and lower-bound transition rules, the

stationary Markov equilibrium is unique and displays a reputation cycle as below:

(1) Reputation-building stage: k ≤ K − 1. The firm plays mixed strategy a(k∆) = a∗(k∆)

and the buyers play mixed strategy y(k∆) ∈ (0, 1) where y(k∆) is strictly increasing in

k as follows:

(2) Reputation-exploitation stage: k ≥ K. The firm does not invest for sure and the buyers

buy for sure, i.e. y(k∆) = 1 and a(k∆) = 0.

Next, we study the limiting equilibrium as K → +∞ in order to get a clearer analytic

solution of buyers’ equilibrium behavior and present the comparative statics analysis in

Proposition 4.2.15

Proposition 4.2. Under Assumptions 2.1-2.5, 4.1-4.2 and lower-bound transition rules, y(k)

is decreasing in (δ−1, A−1, γ, p, q) for any k.

The stationary Markov equilibrium is a quasi-absorbing equilibrium if Assumption 4.2 is

violated. Proposition 4.3 tells us that the buyers cannot provide enough incentives for the

firm to invest if reputation is low. Furthermore, we can show that as K → +∞, the number

15 All the comparative-statics results can be explained by similar arguments as in the one-step transition

rules
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of states in which the firm invests with positive probability is bounded: K − k∗ is bounded,

which means that the firm loses the incentives to invest at most of the states.

Proposition 4.3. If Assumption 4.2 does not hold, under Assumptions 2.1-2.5, 4.1 and

lower-bound transition rules, the stationary Markov equilibrium has the following features:

there exists a unique integer 1 ≤ k∗ ≤ K − 1 such that

(1) If 0 ≤ k ≤ k∗, then (a(k), y(k)) = (0, 0).

(2) If k∗ + 1 ≤ k ≤ K − 1, then a(k) = a∗(k) and y(k) ∈ (0, 1).

(3) If k ≥ K, then (a(k), y(k)) = (0, 1).

Moreover, if K → +∞, then K − k∗ is bounded.

4.2. Augmented One-step Transition Rule. In previous sections, the buyers have no

impact on the accumulation of reputation. In this section, we augment the one-step transition

rules by allowing the buyers to change the reputation. We analyze the reputation dynamics

under the following augmented one-step transition rule.

(1) If the buyers do not buy in state X, then the state will remain the same no matter what

the firm does.

P (X ′ = X|I,NB,X) = P (X ′ = X|NI,NB,X) = 1.

(2) If the buyers buy in state X, then investing will bring the state one-step up and not

investing will bring the state one-step down.

P (X ′ = X + ∆|I, B,X) = 1, P (X ′ = max(X −∆, 0)|NI,B,X) = 1.

Assumption 4.3: g1(0, 0) = g1(1, 0) = 0.

Assumption 4.3 says that the firm gets the same payoff 0 if the buyers do not buy, as the

firm has no chance of building reputation. Define K∗ = K if K is even and K∗ = K+ 1 if K

is odd. Define K̂ = b1+A
1−A

δ
1−δ −

1
1+δ
c+ 1, which determines the existence of an non-absorbing

equilibrium. Define K∗∗ ≡ max(K∗ − 2b δ2

1−δ2 c − 2, 0).

Theorem 4.4. Under Assumptions 2.1-2.5 and 4.3 and the augmented one-step transition

rule, the unique stationary Markov equilibrium is characterized as below:

(1) K ≤ K̂ − 1. The stationary Markov equilibrium is a non-absorbing equilibrium.

(a) If 0 ≤ k ≤ K∗∗, a(k∆) = a∗(k∆) and 0 < y(k∆) < 1.
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(b) If K∗∗ ≤ k ≤ K∗ − 1, then a(k∆) = a∗(k∆) and 0 < y(k) < 1 in even states, and

a(k∆) = y(k∆) = 1 in odd states.

(c) If k ≥ K∗, then (a(k∆), y(k∆)) = (0, 1).

(2) K ≥ K̂. The stationary Markov equilibrium is a quasi-absorbing equilibrium.

(a) If 0 ≤ k ≤ K − K̂, then (a(k∆), y(k∆)) = (0, 0).

(b) If K − K̂ + 1 ≤ k ≤ K − 1, then a(k∆) = a∗(k∆) and 0 < y(k∆) < 1.

(c) If k ≥ K, then (a(k∆), y(k∆)) = (0, 1).

If it is easy for the firm to build reputation to the state in which buyers buy for sure

(K ≤ K̂−1), then there is a unique non-absorbing equilibrium characterized by a reputation-

building stage and a reputation-exploitation stage. There is no reputation-absorbing stage

in which the firm does not invest and the buyers do not buy if k ≤ k∗ for some k∗ ≤ K − 1.

Indeed, if this “reputation trap” existed, the firm would strictly prefer to invest at k = k∗+1

since reputation could be exploited by investing in the near future (K ≤ K̂ − 1), and not

investing would lead to the “reputation trap” with a low payoff 0. Then, the buyers would

buy for sure at k = k∗ + 1 and consequently for all k > k∗ + 1, the buyers would buy for

sure and the firm would invest for sure, contradicting to the fact that firm always exploits

the reputation for high enough state. Therefore, there is no reputation-absorbing stage if

K ≤ K̂ − 1.

The reputation-building stage is composed of two sub-stages. For lower reputation (0 ≤

k ≤ K∗∗), both the firm and the buyers play mixed strategies. For higher reputation (K∗∗ ≤

k ≤ K∗ − 1), the incentives for the firm to invest is so high that the firm invests for sure in

the odd states, thus the buyers also buy for sure in the odd states. We also show that both

players play mixed strategies in even states. The reason is that if there are two consecutive

states in which the firm invests for sure, then the firm will invest for sure in the future,

a contradiction. In the reputation-exploitation stage (k ≥ K∗), the firm has no reward of

building reputation as the buyers buy for sure. As a result, the reputation moves up and

down between (K∗−1)∆ and K∗∆ at which the buyers buy for sure. Therefore, if the buyers

are given the maximal power of controlling the reputation, the firm has high incentives to

build reputation, and eventually reputation stock cannot escape the two reputation levels at

which the buyers buy for sure.
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If it is difficult for player 1 to build reputation to the state in which buyers buy for sure

(K ≥ K̂), then there is a unique quasi-absorbing equilibrium characterized by three stages: a

reputation-absorbing stage, a reputation-building stage and a reputation-exploitation stage.

There is a state (K − K̂)∆ at which the future continuation payoff is just not enough for

player 1 to build reputation. Any state k ≤ K−K̂ is an absorbing state, in which the buyers

do not buy because he knows that future buyer in the next state will not buy. Therefore, the

firm loses the incentive to invest. In the reputation-building stage (K− K̂+1 ≤ k ≤ K−1),

the buyers will buy with positive probability in an increasing order to provide incentives for

the firm to build reputation, and the firm will play a mixed strategy to make the buyers just

indifferent between B and NB. In the reputation-exploitation stage (k ≥ K), the firm has

no reward of building reputation since the buyers will buy for sure in all states larger than

K∆.

For a tractability solution, we consider an analytic solution of the limiting equilibrium as

∆→ 0 as follows: define X̂ = 1
r

1+A
1−A .

(1) X∗ ≤ X̂. The equilibrium is a non-absorbing equilibrium.

(a) If 0 ≤ X ≤ max(X∗ − 1
r
, 0), then

(a(X), y(X)) =

 (a∗(X), (1+A)−r(1−A)(X∗−X)
2A

) X = lim∆→0(2k + 1)∆

(a∗(X), (1+A)−r(1−A)(X∗−X)
2

) X = lim∆→0 2k∆.

(b) If max(X∗ − 1
r
, 0) < X < X∗, then

(a(X), y(X)) =

 (1, 1) X = lim∆→0(2k + 1)∆

(a∗(X), 1+A−r(1−A)(X∗−X)
1+A+r(1−A)(X∗−X)

) X = lim∆→0 2k∆.

(c) If X ≥ X∗, (a(X), y(X)) = (0, 1).

(2) X∗ > X̂. The equilibrium is a quasi-absorbing equilibrium.

(a) 0 ≤ X ≤ X∗ − X̂, a(X) = y(X) = 0.

(b) X∗ − X̂ < X ≤ X∗, (a(X), y(X)) = (a∗(X), 1− 1−A
1+A

r(X∗ −X)).

(c) X ≥ X∗, (a(X), y(X)) = (0, 1).

(3) X̂ is decreasing in (A−1, r), and y(X) is non-increasing in (A−1, r) for any X.

Qualitatively similar to that in the one-step transition rules, Proposition 4.5 characterizes

the limiting equilibrium under augmented one-step transition rule and finds the necessary and
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sufficient condition for the existence of absorbing states and how the equilibrium behavior

is influenced by the changes of parameters.

Proposition 4.5. Under Assumptions 2.1-2.5, 4.3 and the augmented one-step transition

rule, the unique stationary Markov equilibrium in the limit as ∆ → 0 is characterized as

above.

4.3. Multiple Investment Levels. In the previous sections, we assume that the firm has

only two choices: investment I and no investment NI. In this section, we relax the assump-

tion that there is only one investment choice. Instead, there are n investment choices: {Ii}ni=1

and a choice of no investment NI ≡ I0. Assume that in the next period, reputation can only

go one-step up or down. If the buyers choose B(NB) and the firm chooses Ii, then denote

g1(Ii, B) (g1(Ii, NB)) as firm’s stage game payoff and denote g2(Ii, B,X) (g2(Ii, NB,X)) as

each buyer’s stage game payoff if the state is X.

Assumption 4.4: g1(Ii, B) > g1(Ij, B), g1(Ii, NB) ≥ g1(Ij, NB) for any i < j.

Assumption 4.5: ci ≡ g1(I0, B)− g1(Ii, B) > g1(I0, NB)− g1(Ii, NB) for any 1 ≤ i ≤ n.

Assumption 4.6: g2(Ii, B,X) > g2(Ii, NB) for any 1 ≤ i ≤ n. g2(Ii, NB) = g2(Ij, NB)

for any 0 ≤ i, j ≤ n.

Assumption 4.7: g2(Ii, B,X) is strictly increasing in X.

Assumption 4.8: There is X∗ such that if X ≥ X∗ then g2(I0, B,X) ≥ g2(I0, NB),

otherwise g2(I0, B,X) < g2(I0, NB).

Assumption 4.9: g1(Ii, NB) = g1(Ij, NB) = 0 for any 0 ≤ i, j ≤ n.

Assumptions 4.4-4.8 is the same as Assumptions 2.1-2.5 if we restrict the model to two

choices Ii and I0. Assumption 4.8 tells us that if X ≥ X∗, it is a dominant strategy for the

buyers to play B. It is reasonable to assume that the buyers will buy the product for sure

independent of the firm’s current behavior because the firm has done good enough in the

past. If X < X∗, then there is a mixed strategy a∗i (X) ∈ (0, 1) of playing Ii and 1− a∗i (X)

of playing I0 to make the buyers be indifferent between B and NB. Assumption 4.9 is a

simplifying assumption. If the buyers choose not to buy the product, then any investment

level Ii will bring the same payoff 0 to the firm.
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Next, we focus on one-step transition rules as follows:

(1) If the firm invests at the level of Ii, then the probability that the next state X ′ = X + ∆

is 1− qi and the probability that X ′ = max{X −∆, 0} is qi:

P (X ′|Ii) =

 1− qi X ′ = X + ∆

qi X ′ = max(X −∆, 0).

(2) If the firm does not invest, then the probability that X ′ = max(X −∆, 0) is 1 − p and

the probability that X ′ = X + ∆ is p:

P (X ′|I0) =

 p X ′ = X + ∆

1− p X ′ = max(X −∆, 0).

Without loss of generality, assume that ci > cj for i > j. Assumption 4.10 tells us that an

investment with larger cost leads to a higher probability of one-step increase of reputation

in the next period.

Assumption 4.10 : qi < qj for i > j.

Denote i∗ = arg mini≥1{ ci
q0−qi}. Therefore, ci∗ is the most “efficient” investment level in

the sense that the marginal cost is minimized relative to marginal benefit. Define

A =
g1(Ii∗ , B)

g1(I0, B)
, Ai∗ =

(1− p)A− qi∗
1− qi∗ − Ap

.

Assumption 4.11: A >
q∗i

1−p for any 1 ≤ i ≤ n.

Assumption 4.11 guarantees that Ai∗ ∈ (0, 1). The number A captures the investment

cost of Ii∗ : higher A means lower investment cost of Ii∗ .
q∗i

1−p captures the benefit of Ii∗ :

lower
q∗i

1−p means higher benefit of Ii∗ . Therefore, Assumption 4.11 tells us that the cost of

investing cannot be too high relative to the benefit of investing.

Theorem 4.3 constructs a stationary Markov equilibrium in which the firm only mixes

between the “efficient” investment level Ii∗ and not investing I0 and the buyers play mixed

strategies in the reputation-building stage (X < X∗). In the reputation-exploitation stage

(X ≥ X∗), the firm does not invest and the buyers buy. However, this may not be the

only stationary Markov equilibrium if we allow the buyers to choose pure strategies in the

reputation-building stage.
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Theorem 4.6. Under Assumptions 4.4-4.11 and one-step transition rules, there is a sta-

tionary Markov equilibrium as below: there exists an integer M(p, q∗i ) > 0 for each p and q∗

such that

(1) Reputation-building stage: M(p, q∗i ) ≤ k ≤ K − 1. The firm plays Ii∗ with probability

a∗i∗(k∆) and plays I0 with probability 1− a∗i∗(k∆). The buyers also play mixed strategy

y(k∆) ∈ (0, 1), which is characterized by a second-order difference equation:

y((k + 1)∆) =
1

δ
(1− Ai∗)y(k∆) + Ai∗y((k − 1)∆) ∀1 ≤ k ≤ K − 2.

(2) Reputation-exploitation stage: k ≥ K. The firm does not invest and the buyers do not

buy, i.e. y(k∆) = 1 and a(k∆) = 0.

5. Conclusion

In this paper, we study reputation dynamics in a setting of stochastic games in which rep-

utation is modeled as a state variable, rather than a belief as in the traditional reputation

literature. Under a class of transition rules, the unique stationary Markov equilibrium is

characterized by a reputation-building phase, a reputation-exploitation phase and a possible

reputation-absorbing stage. Under certain conditions, there is no absorbing state and rep-

utation is a long-run phenomenon, which moves cyclically between the reputation-building

stage and the reputation-exploitation stage. Therefore, the paper provides a new rationale

for permanent reputations, in line with the recent experience of Toyota with the recalls.

Furthermore, the result is robust under different transition rules including the case in which

the buyers also have the power of controlling the evolution of reputation.

Based on this paper, there are several extensions, namely, non-submodularity, competition

and multidimensional reputation. This paper assumes that the firm’s payoff is subject to

submodularity, which is common in the reputation literature (Liu, 2011; Liu and Skrzypacz,

2014; Phelan, 2006). Intuitively, submodularity reflects situations where the players have

conflicting interests. There are two other cases of interest: supermodularity (common inter-

ests) and independent interests. In the online appendix, we analyze the independent interest

case in which the investment cost is a constant, independently of the buyers’ choices, and

shows that the qualitative features are similar to the submodularity case in this paper. The

common interests case in which the firm’s payoffs display supermodularity is the object of

future research.
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Faced with competition, a firm builds reputation because it wants to differentiate its

product from other firms. Therefore, we can study the industry dynamics when there are

multiple firms in the market. It is interesting to investigate firms’ exit and entry decisions

and the stationary distribution of reputation in a steady-state equilibrium. As a first step,

Huangfu (2014a) studies a model with two long-run firms competing for a sequence of short-

run buyers in each period. Since the buyers’ choices only depend on the relative reputation

of the two firms, a natural sufficient statistic is reputation difference of the two firms. It

would be interesting to know whether the leading firm perpetually enlarge the leadership or

the follower eventually catch up. Under certain circumstances, Huangfu (2014a) shows that

the latter is true: the leader has less incentive to invest than the follower. As a result, there

are reputation cycles in which the leadership changes over time.

A firm may have multidimensional reputation to manage. For example, an automobile

company may have multiple sub-brands to sell or may have only a brand to sell but buyers

care about different dimensions of the car quality: performance, reliability or appearance.

Therefore, it is useful to study how a firm allocates its resource in order to optimally manage

its multidimensional reputation. Huangfu (2014b) establishes that in a model of two dimen-

sions of reputation, a firm will focus on a certain dimension with relatively higher reputation

and build this dimension to a very high level and then starts to allocate resource to a new

dimension because a low effort is enough to maintain reputation of the old dimension.

Appendix A. Proofs of Theorem 3.1

Outline of the Proof of Theorem 3.1 if p = q = 0.

(1) Lemma A.1 shows that if the buyer does not buy at state k (yk = 0), then the buyer will

not buy at any smaller state (yi = 0 ∀ 0 ≤ i ≤ k). Therefore, any equilibrium can be

divided into two kinds as follows: (i) yi > 0 for any i ≥ 0; (ii) there exists k∗ ≥ 1 such

that yi = 0 if and only if 0 ≤ i ≤ k∗ − 1.

(2) Lemma A.2 shows that it is impossible that the buyers buy for sure for two consecutive

states for k ≤ K. Otherwise, the firm will invest for sure in all future states, which is

impossible because such incentives cannot be provided by the buyers.

(3) Consider the non-absorbing equilibrium: y0 > 0. By Lemma A.1, yi > 0 for any i ≥ 0.

(a) For small ∆, show that the firm does not invest in state k ≥ K.
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(b) If the firm does not invest in state K, then by Lemma A.2, we use backward in-

duction to show that yi ∈ (0, 1) for any 2 ≤ i ≤ K − 1. By solving a second-order

difference equation, we show the uniqueness of the non-absorbing equilibrium.

(c) Use the solution of {yi}K−1
i=0 to find the necessary condition under which y0 > 0:

K ≤ K̄00.

(4) Consider the quasi-absorbing equilibrium: y0 = 0. By Lemma A.1, there exists k∗ ≥ 1

such that yi = 0 if and only if 0 ≤ i ≤ k∗ − 1.

(a) For k∗ ≤ k ≤ K, we use the same method as in Step 3 to show the uniqueness of

the quasi-absorbing equilibrium and characterize it.

(b) Show that k∗ = K − K̄00, thus the necessary condition for the existence of a quasi-

absorbing equilibrium is K ≥ K̄00 + 1.

(5) If K ≤ K̄00, then by Step 3(c), the equilibrium satisfies y0 = 0 and is the unique

quasi-absorbing equilibrium characterized in Step 4. If K ≤ K̄00, then by Step 4(b), the

equilibrium satisfies y0 > 0 and is the unique non-absorbing equilibrium characterized in

Step 3.

In this section, Vk and yk denote V (k∆) and y(k∆). For notational convenience, we use

g1(a, y) instead of (1− δ)g1(a, y).

Lemma A.1: For any p ≥ 0 and q ≥ 0, if yk+1 = 0, then yi = 0 for all 0 ≤ i ≤ k.

Proof. Step 1: y0 < 1.

If y1 = 1, then V0 > g1(0, 1) + δ(pV1 + (1− p)V0) > g1(0, 1) + δV0. Therefore, V0 >
g1(0,1)

1−δ ,

a contradiction to the fact that g1(0, 1) is the maximal stage-game payoff.

Step 2: If y1 = 0, then y0 = 0.

Assume by contradiction that y0 > 0. By Step 1, 0 < y0 < 1. Therefore, V0 = g1(0, y0) +

δ(pV1 + (1 − p)V0) = g1(1, y0) + δ(qV0 + (1 − q)V1) and thus V1 − V0 = 1
δ(1−p−q)(g1(0, y0) −

g1(1, y0)) > 0.

y1 = 0 implies that V1 = g1(0, 0) + δ(pV2 + (1− p)V0) = g1(1, 0) + δ(qV0 + (1− q)V2) and

V2 − V0 = 1
δ(1−p−q)(g1(0, 0) − g1(1, 0)) < 1

δ(1−p−q)(g1(0, y0) − g1(1, y0)) = V1 − V0. Therefore,

V2 < V1. Then, V0 = g1(0, y0) + δ(pV1 + (1 − p)V0) > g1(0, 0) + δ(pV2 + (1 − p)V0) = V1, a

contradiction to V1 > V0.

Step 3: If yk+1 = 0 for k ≥ 1, then yk = 0.
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Assume by contradiction that yk > 0. Show that for any 1 ≤ i ≤ k, yk−i = 1 and

Vk−i+1 − Vk−i ≤ Vk−i − Vk−i−1.

First, check the case that i = 1. By yk+1 = 0, Vk+1 − Vk−1 ≤ δ(p(Vk+2 − Vk) + (1 −

p)(Vk−Vk−2)). As Vk+1−Vk−1 = 1
δ(1−p−q)(g1(0, yk)−g1(1, yk)) > Vk+2−Vk, then Vk+2−Vk <

Vk+1 − Vk−1 < Vk − Vk−2. If yk−1 < 1, then 0 < yk < 1. We can show that yk−1 < 1,

0 < yk < 1 and yk+1 = 0 imply that γ
1−A > (1−Apq

δ
+ Apq)

γ
1−A , a contradiction. Therefore,

yk−1 = 1. yk ≤ 1 = yk−1 implies that Vk − Vk−1 ≤ δ(q(Vk−1 − Vk−2) + (1 − q)(Vk+1 − Vk)),

thus Vk − Vk−1 < Vk−1 − Vk−2.

Assume by induction that for any 1 ≤ j ≤ i−1, yk−j = 1 and Vk−j+1−Vk−j ≤ Vk−j−Vk−j−1.

Now, show that it is true for j = i.

By yk+1 = 0, Vk+1− Vk−i ≤ δ(p(Vk+2− Vk−i+1) + (1− p)(Vk − Vk−i−1)) = δ(p(Vk+2− Vk) +

(1− p)(Vk−i+1−Vk−i−1) +Vk−Vk−i+1). By induction hypothesis, Vk−Vk−1 < Vk−i+1−Vk−i.

Then, we can show that Vk+1 − Vk−1 ≤ δ(p(Vk+2 − Vk) + (1 − p)(Vk−i+1 − Vk−i−1)). By

induction hypothesis, Vk+2 − Vk < Vk−i+1 − Vk−i−1, then Vk+1 − Vk−1 < Vk−i+1 − Vk−i−1. In

all, yk−i = 1. Furthermore, Vk−i+1 − Vk−i ≤ δ(q(Vk−i − Vk−i−1) + (1 − q)(Vk−i+2 − Vk−i+1))

and thus Vk−i+1 − Vk−i < Vk−i − Vk−i−1. Therefore, y0 = 1, a contradiction to Step 1.

In all, we have shown that yk = 0.

Step 4: If yk+1 = 0 for k ≥ 1, then yi = 0 for all 0 ≤ i ≤ k.

Use the same argument as in Step 3, we can show by induction that if yk+1 = 0 for k ≥ 1,

then yi = 0 for all 1 ≤ i ≤ k. By Step 2, if y1 = 0, then y0 = 0.

�

Lemma A.2: If p = q = 0, then it is impossible that the buyers buy the product for sure

at two consecutive states: yk = yk+1 = 1 for any 1 ≤ k ≤ K − 2.

Proof. If yk = yk+1 = 1 for some 0 ≤ k ≤ K−2, then Vk = g1(1, 1)+δVk+1 ≥ g1(0, 1)+δVk−1

and Vk+1 = g1(1, 1)+δVk+2 ≥ g1(0, 1)+δVk. Then, Vk+1−Vk = δ(Vk+2−Vk+1) < Vk+2−Vk+1.

Therefore, Vk+2 ≥ g1(0, 1)+δVk+(Vk+2−Vk+1) > g1(0, 1)+δVk+(Vk+1−Vk) = g1(0, 1)+δVk+1.

Therefore, the firm strictly prefers I to NI at period k + 2. Then, Vk+2 = g1(1, 1) + δVk+3.

By induction, we can show that for all t ≥ k, Vt = g1(1, 1) + δVt+1 ∀t ≥ k.
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Since {Vt}t≥k is a strictly increasing and bounded sequence, there is a limit V ∗ such that

V ∗ = g1(1, 1) + δV ∗. Therefore, Vt+1 < V ∗ = g1(1,1)
1−δ for any t ≥ k. However, Vt+1 > Vt =

g1(1, 1) + δVt+1 and hence Vt+1 >
g1(1,1)

1−δ , a contradiction.

�

Lemma A.3: If p = q = 0, then (1) If 0 < yk < 1 and 0 < yk+1 < 1, then zk+1 =

1
δ
(1 − A)zk + Azk−1; (2) If yk+1 = 1, then zk+1 ≤ 1

δ
(1 − A)zk + Azk−1; (3) If yk+1 = 1 and

Vk+2 = g1(0, yk+2) + δVk+1, then zk+2 ≥ 1
δ
(1− A)zk+1 + Azk.

Proof. Because yk > 0 for all 0 ≤ k ≤ K − 1, Vk = g1(1, yk) + δVk+1 for all 0 ≤ k ≤ K − 1.

Define zk = yk + γ
1−A .

(1) 0 < yk < 1 and 0 < yk+1 < 1. We can show that (1− δ2)Vk = g1(0, yk) + δg1(1, yk−1) =

g1(1, yk) + δg1(0, yk+1). Therefore, zk+1 = 1
δ
(1− A)zk + Azk−1.

(2) yk+1 = 1. By Lemma A.2, we have 0 < yk < 1. Then, (1 − δ2)Vk = g1(0, yk) +

δg1(1, yk−1) ≥ g1(1, yk) + δg1(0, yk+1). Therefore, zk+1 ≤ 1
δ
(1− A)zk + Azk−1.

(3) yk+1 = 1 and Vk+2 = g1(0, yk+2) + δVk+1. By Lemma A.2, we have 0 < yk < 1.

Then, (1− δ2)Vk+1 = g1(1, yk+1) + δg1(0, yk+2) ≥ g1(0, yk+1) + δg1(1, yk). Therefore, zk+2 ≥
1
δ
(1− A)zk+1 + Azk.

�

Lemma A.4: Under p = q = 0, if K > 3 +
log ε−1

A

log A
ε

, then the firm does not invest in state K

and 0 < yk < 1 for all 2 ≤ k ≤ K − 1. ε = 1
2δ

(1− A+
√

(1− A)2 + 4Aδ2).

Proof. Step 1: If the firm strictly prefers to play NI in state K and yK−1 < 1, then

0 < yk < 1 for all 2 ≤ k ≤ K − 2.

By lemma A.3(3), zK ≥ 1
δ
(1 − A)zK−1 + AzK−2. If yK−2 = 1, then zK−2 = 1 + γ

1−A

and zK−1 ≤ δ(1 + γ
1−A). Since yK−2 = 1, yK−3 < 1 by Lemma A.2. By Lemma A.3(2) ,

zK−2 ≤ 1
δ
(1 − A)zK−3 + AzK−4 ≤ 1

δ
(1 − A)zK−3 + A(1 + γ

1−A). Then, zK−3 ≥ δ(1 + γ
1−A).

By Lemma A.3(3), zK−1 ≥ 1
δ
(1 − A)zK−2 + AzK−3, then zK−1 > zK−3 ≥ δ(1 + γ

1−A), a

contradiction to zK−1 ≤ δ(1 + γ
1−A). In all, we have shown that yK−2 < 1.

Show that 0 < yk < 1 for all 2 ≤ k ≤ K − 2 by induction. Assume yt < 1 for all t ≥ k.

Assume yk−1 = 1, then yk−2 < 1. By Lemma A.3(2), zk−1 ≤ 1
δ
(1−Ap)zk−2 +Apzk−3 ≤ 1

δ
(1−

A)zk−2+A(1+ γ
1−A). Then, zk−2 ≥ δ(1+ γ

1−A). By Lemma A.3(3), zk ≥ 1
δ
(1−A)zk−1+Azk−2,
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then zk > zk−2 ≥ δ(1+ γ
1−A). Therefore, zk+1 = 1

δ
(1−A)zk+Azk−1 > 1+ γ

1−A , a contradiction.

In all, we have show that 0 < yk < 1 for all 2 ≤ k ≤ K − 2.

Step 2 : The firm strictly prefers to play NI in state K.

Assume that the firm weakly prefers to play C in state K. By the same logic of Lemma

A.2, the firm strictly prefers to play NI in state K + 1. By Lemma A.3(3), zK+1 ≥ 1
δ
(1 −

A)zK + AzK−1. Then, zK−1 ≤
1− 1

δ
(1−A)

A
(1 + γ

1−A) = (1
ε
− ε−1

A
)(1 + γ

1−A).

Figure out the lower bound of zK−1. If yK−2 < 1, then by the same argument of Step

1, we have 0 < yk < 1 for all 2 ≤ k ≤ K − 2. Then, zK − εzK−1 ≤ (−A
ε
)K−2(z2 − εz1).

Therefore, zK−1 ≥ (1
ε
− (A

ε
)K−2)(1 + γ

1−A). If yK−2 = 1, then by Lemma A.2, we have

yK−3 < 1. By the same argument of Step 1, 0 < yk < 1 for all 2 ≤ k ≤ K − 3. By Lemma

A.3(3), zK−1 ≥ 1
δ
(1 − A)zK−2 + AzK−3. Therefore, zK−1 − εzK−2 ≥ (−A

ε
)K−3(z2 − εz1). As

zK−εzK−1 ≤ (−A
ε
)(zK−1−εzK−2) ≤ (−A

ε
)K−2(z2−εz1), then zK−1 ≥ (1

ε
−(A

ε
)K−2)(1+ γ

1−A).

The upper and lower bound of zK−1 implies that ε−1
A
≤ (A

ε
)K−2, a contradiction to K >

3 +
log ε−1

A

log A
ε

. In all, the firm strictly prefers NI in state K.

Step 3 : yK−1 < 1.

Assume that yK−1 = 1. We have shown in Step 2 that the firm strictly prefer NI in

state K. Therefore, zK ≥ 1
δ
(1 − Ap)zK−1 + AzK−2. Then, zK−2 ≤ (

1− 1
δ

(1−A)

A
)(1 + γ

1−A) =

(1
ε
− ε−1

A
)(1 + γ

1−A).

Figure out the lower bound of zK−2. If yK−3 < 1, then by the same argument of Step 1,

0 < yk < 1 for all 2 ≤ k ≤ K−3. We can estimate zK−2: zK−1−εzK−2 ≤ (−Ap
ε

)K−3(z2−εz1)

and thus zK−2 ≥ (1
ε
− (A

ε
)K−3)(1 + γ

1−A).

If yK−3 = 1, then by Lemma A.2, we have yK−4 < 1. By the same argument of Step 1,

0 < yk < 1 for all 2 ≤ k ≤ K − 4. Because zK−2 ≥ 1
δ
(1− A)zK−3 + AzK−4, zK−2 − εzK−3 ≥

(−A
ε
)K−4(z2− εz1). Then, zK−1− εzK−2 ≤ (−A

ε
)(zK−2− εzK−3) ≤ (−A

ε
)K−3(z2− εz1). In all,

zK−2 ≥ (1
ε
− (A

ε
)K−3)(1 + γ

1−A).

The upper and lower bound of zK−1 implies that ε−1
A
≤ (A

ε
)K−3, a contradiction to K >

3 +
log ε−1

A

log A
ε

. In all, yK−1 < 1.

Step 4 : The firm strictly prefers NI in state t > K.
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Assume that the firm weakly prefers C in state K+ i where i ≥ 1. By the same argument

of Lemma A.3, the firm strictly prefers NI in state K + i+ 1. Therefore, we can show that

(1− δ2)VK+i = g1(1, 1) + δg1(0, 1) ≥ g1(0, 1) + δg1(1, 1), a contradiction to g1(0, 1) > g1(1, 1).

�

Proof of Theorem 3.1 if p = q = 0:

Proof. Step 1: Show the uniqueness of non-absorbing equilibrium: y0 > 0 and characterize

it.

Firstly, show that there exists some ∆̄00 > 0 such that if ∆ < ∆̄00, then K > 3 +

log ε−1
A
/ log A

ε
.

By the definition of ε, we can show that lim∆→0 εe
−r∆ = 1. Therefore, lim∆→0 ∆ log er∆−1

A
/ logA =

lim∆→0 ∆ log r∆
A
/ logA = 0. Furthermore, lim∆→0(K − 3)∆ = X∗ > 0. In all, for ∆ small

enough, K > 3 + log ε−1
A
/ log A

ε
.

By Lemma A.4, if K > 3 + log ε−1
A
/ log A

ε
, the firm strictly prefers to play NI in state

k ≥ K and 0 < yk < 1 for all 2 ≤ k ≤ K − 1. Furthermore, the buyers buy for sure in state

k ≥ K and play mixed strategy a∗(k∆) in the state 2 ≤ k ≤ K − 1.

In order to solve for yk for any 1 ≤ k ≤ K − 1, there are two cases for us to consider:

y1 = 1 and y1 < 1.

Case 1: y1 < 1.

By lemma A.3(1), for any 1 ≤ k ≤ K − 1, zk+1 = 1
δ
(1 − A)zk + Azk−1. Furthermore,

z1 = (1
δ
(1− A) + 1)z0. By zK = 1 + γ

1−A , the solution is

zk =
(1 + ε)εk − (1− A

ε
)(−A

ε
)k

(1 + ε)εK − (1− A
ε
)(−A

ε
)K

(1 +
γ

1− A
) ∀0 ≤ k ≤ K − 1.

In order to satisfy y1 < 1, we need z1 < 1 + γ
1−A . Therefore,

(ε+A
ε

)(ε+1−A
ε

)

(1+ε)εK−(1−A
ε

)(−A
ε

)K
< 1.

Case 2: y1 = 1.

If
(ε+A

ε
)(ε+1−A

ε
)

(1+ε)εK−(1−A
ε

)(−A
ε

)K
> 1, then there is no solution as in Case 1, otherwise y1 > 1, a

contradiction. The only possible case is that the firm strictly prefers I in state 1. Then, for

any 2 ≤ k ≤ K − 1, zk+1 = 1
δ
(1−A)zk +Azk−1 ∀2 ≤ k ≤ K − 1. Furthermore, z1 = 1 + γ

1−A .

By zK = 1 + γ
1−A , the solution is

zk = (εk−1 + (1− εK−1)
εk−1 − (−A

ε
)k−1

εK−1 − (−A
ε
)K−1

)(1 +
γ

1− A
) ∀1 ≤ k ≤ K − 1.
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z0 can be solved by z2 = 1−A+δ+Aδ2

δ2 z0−A
δ
z1, which comes from the firm’s optimality condition

at state 0.

Step 2: Show that the necessary condition for the existence of a non-absorbing equilibrium is

K ≤ K̄00, where K̄ is the largest integer to satisfy (1+ ε)εK− (1− A
ε
)(−A

ε
)K < 1−A+γ

γ
(ε+ A

ε
).

Check the condition to guarantee y0 > 0: z0 =
ε+A

ε

(1+ε)εK−(1−A
ε

)(−A
ε

)K
(1 + γ

1−A) > γ
1−A .

Therefore, (1 + ε)εK − (1− A
ε
)(−A

ε
)K < 1−A+γ

γ
(ε + A

ε
). Because the LHS is increasing in K

if K > 3 + log ε−1
A
/ log A

ε
, then there is a cutoff K̄00, which is the largest integer to satisfy

the above inequality. If K ≤ K̄00, then the above inequality holds. If K ≥ K̄00 + 1, then the

above inequality does not hold.

In all, we need K ≤ K̄00 to guarantee the existence of a non-absorbing equilibrium.

Step 3: Show the uniqueness of a quasi-absorbing equilibrium: y0 = 0 and characterize it.

Define n ≥ 1 as the smallest state such that yn > 0. Therefore, yk = 0 for all 0 ≤ k ≤ n−1.

Then, Vk = g1(0,0)
1−δ for all 0 ≤ k ≤ n−1. Moreover, Vn = g1(0, yn)+ δVn−1 = g1(1, yn)+ δVn+1

and Vn+1 = g1(0, yn+1) + δVn = g1(1, yn+1) + δVn+2. Therefore, zn+1 = (1−A
δ

+ 1)zn + (1 +

δ)( γ
1−A − zn).

Combined with zk+2 = 1
δ
(1−A)zk+1 +Azk for n ≤ k ≤ K − 2 and zK = 1 + γ

1−A , there is

a unique solution zk for n ≤ k ≤ K − 1.

Step 4: Show that the necessary condition for the existence of a quasi-absorbing equilibrium

is K ≥ K̄00 + 1.

Show that n = K − K̄00. Define f(n) ≡ ε+A
ε

(1+ε)εK−n−(1−A
ε

)(−A
ε

)K−n (1 + γ
1−A). We can show

that (1 − θ)(zn − γ
1−A) = f(n) − γ

1−A . By the firm’s optimality condition at state n − 1,

it is true that zn − γ
1−A < γ

δ
. Furthermore, it is trivial that zn − γ

1−A > 0. Therefore,

γ
1−A < f(n) < γ

1−A + (1−θ)γ
δ

. Moreover, f(n − 1) = 1

1+
(1−A)(1−θ)

δ

f(n) < 1

1+
(1−A)(1−θ)

δ

( γ
1−A +

(1−θ)γ
δ

) = γ
1−A . In all, we have shown that f(n− 1) < γ

1−A < f(n). By the definition of K̄00,

f(n− 1) < f(K − K̄00) < f(n). Therefore, n = K − K̄00, thus K ≥ K̄00 + 1.

Step 5: By Step 2, if K ≥ K̄ + 1, then the equilibrium is a quasi-absorbing equilibrium,

which is uniquely characterized by Step 3. By Step 4, if K ≤ K̄, then the equilibrium is a

non-absorbing equilibrium, which is uniquely characterized by Step 1.

�
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Outline of the Proof of Theorem 3.1 if p = q = 0 does not hold.

(1) Lemma A.5 shows that if the firm weakly prefers not to invest at state t ≥ K, then he

will strictly prefer not to invest from t on.

(2) Consider a non-absorbing equilibrium: y0 > 0. By Lemma A.2, yi > 0 for any i ≥ 0.

Show that 0 < yi < 1 for any M ≤ i ≤ K − 1 and the firm does not invest at state K.

(a) Prove by contradiction. Assume k as the smallest integer to satisfy yk = 1, a(k) > 0

and 0 < yk−1 < 1, where M ≤ k ≤ K.

(b) Show that yi = 1 for any M ≤ i ≤ k − 2.

(c) There is an integer N and a sequence {ki}Ni=0 such that (i) k0 = k − 1, kN ≤ K − 1

and ki > ki−1 +1; (2) For each M ≤ j ≤ K−1, 0 < yj < 1 if and only if j ∈ {ki}Ni=0.

(d) Show that as ∆ < ∆̄pq, then N is bounded below by an integer number Npq.

(e) Show that if N ≥ Npq, then yki is increasing in ki in such a way that ykN > 1, a

contradiction.

(3) Step 3 and Lemma A.5 imply that ak = 0 for k ≥ K.

(4) Consider a quasi-absorbing equilibrium: Define K−K̄pq as the largest integer k to satisfy

yk > 0. Let state K− K̄pq play the same role as state 0 in the non-absorbing equilibrium

described, then we have characterized the equilibrium behavior for k ≥ K − K̄pq. For

0 < k ≤ K − K̄pq − 1, a(k∆) = y(k∆) = 0.

Lemma A.5: If the firm weakly prefers NI at state t ≥ K, then he will strictly prefer NI

from t on.

Proof. Assume by contradiction that k ≥ t + 1 is the smallest state in which the firm

weakly prefers I. Therefore, the firm plays NI at state k − 1. Therefore, Vk − Vk−1 ≤

g1(1, 1) + δ(qVk−1 + (1− q)Vk+1)− (g1(1, 1) + δ(qVk−2 + (1− q)Vk) = δ(Vk+1− Vk) + δq((Vk−

Vk−2)−(Vk+1−Vk−1)). Combined with Vk−Vk−2 ≤ 1
δ(1−p−q)(g1(0, 1)−g1(1, 1)) ≤ Vk+1−Vk−1,

we get Vk − Vk−1 ≤ δ(Vk+1 − Vk).

(1) Show that the firm strictly prefers I at state k + 1.

Assume that the firm weakly prefers NI at state k + 1, then as the firm also weakly

prefers NI at state k − 1, Vk+1 − Vk−1 = δ(p(Vk+2 − Vk) + (1 − p)(Vk − Vk−2). However,

Vk+1−Vk−1 ≥ 1
δ(1−p−q)(g1(0, 1)−g1(1, 1)) ≥ (Vk+2−Vk) and Vk+1−Vk−1 ≥ 1

δ(1−p−q)(g1(0, 1)−

g1(1, 1)) ≥ (Vk − Vk−2), a contradiction. Therefore, the firm strictly prefers I at state k + 1.

(2) Show that Vk+2 − Vk+1 > Vk+1 − Vk.
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By (1), we have Vk+1 − Vk = δ(q(Vk − Vk−1) + (1 − q)(Vk+2 − Vk+1)). Combined with

Vk − Vk−1 ≤ δ(Vk+1 − Vk), we have Vk+2 − Vk+1 > Vk+1 − Vk.

(3) The firm strictly prefers I at state k + 2.

Assume that the firm weakly prefers NI at period k+2, then Vk+3−Vk+1 ≤ 1
δ(1−p)(g1(0, 1)−

g1(1, 1)) ≤ Vk+2 − Vk. Therefore, Vk+2 = Vk+1 + (Vk+2 − Vk+1) = g1(0, 1) + δVk + δp(Vk+2 −

Vk) + (Vk+2 − Vk+1). By (2) and Vk+3 − Vk+1 ≤ Vk+2 − Vk, Vk+2 > g1(0, 1) + δV (k + 1) +

δp(V (k+3)−V (k+1)). Therefore, the firm strictly prefers I at period k+2, a contradiction.

(4) The firm strictly prefers I from k on.

Keep using the argument of (3), the firm strictly prefers I at all state i ≥ k. Therefore,

for all i ≥ k + 1, Vi = g1(1, 1) + δ(qVi−1 + (1 − q)Vi+1) > g1(0, 1) + δ(pVi+1 + (1 − p)Vi−1).

Since {Vi}i≥k is a strictly increasing and bounded sequence, there is a limit V ∗ such that

V ∗ = g1(1, 1) + δ(qV ∗ + (1 − q)V ∗). Therefore, V ∗ = g1(1,1)
1−δ . However, Vi+1 − Vi−1 ≥

1
δ(1−p−q)(g1(0, 1)− g1(1, 1) implies that 0 = limt→+∞ Vt+1−Vt−1 ≥ 1

δ(1−p−q)(g1(0, 1)− g1(1, 1),

a contradiction.

Therefore, the firm strictly prefers NI at state t+1. By induction, the firm strictly prefers

NI from t on. �

Proof of Theorem 3.1 if p = q = 0 does not hold:

Proof. Firstly, we study non-absorbing equilibria: y0 > 0. By Lemma A.1, yi > 0 for any

i ≥ 0. Show that 0 < yi < 1 for any M ≤ i ≤ K − 1 and the firm does not invest

at state K. Prove by contradiction. Denote k as the smallest integer to satisfy yk = 1,

a(k) > 0 and 0 < yk−1 < 1, where M ≤ k ≤ K. For simplicity of notation, we assume

g1(0, 1)− g1(0, 0) = 1. Steps 1-7 lead to a contradiction.

Step 1: It is impossible that 0 < yi < 1 for all i ≤ k − 1.

Firstly, figure out the lower bound of zk−1.

Define M = 3+log(δ(ε−1)/ε)/ log(Apq/ε), where ε = 1
2δ

(1−Apq+
√

(1− Apq)2 + 4Apqδ2).

If 0 < yi < 1 for all i ≤ k − 1, then we can show by solving yi+2 = 1−Apq
δ

yi+1 + Apqyi for

0 ≤ i ≤ k − 3 that yk−2 ≤ yk−1 by the definition of M .

By the same argument as lemma A.3(2), 1 ≤ 1
δ
(1− Apq)yk−1 + Apqyk−2, By yk−2 ≤ yk−1,

zk−1 ≥
1

1
δ
(1− Apq) + Apq

(1 +
γ

1− A
).
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Next, figure out the upper bound of zk−1.

Case 1: 0 < yk+1 < 1.

Together with 0 < yk−1 < 1, we can show that zk+1 ≥ 1
δ
(1−Apq)zk +Apqzk−1. Therefore,

zk−1 ≤
1− 1

δ
(1−Apq)
Apq

(1 + γ
1−A).

Case 2: There is i ≥ 0 such that a(t) > 0, yt = 1 for k + 1 ≤ t ≤ k + i + 1. Moreover,

ak+i+2 = a∗(k + i+ 2), 0 < yk+i+2 < 1 or ak+i+2 = 0, yk+i+2 = 1.

It is true that Vk+i+1 − Vk+i−1 = δq(Vk+i − Vk+i−2) + δ(1 − q)(Vk+i+2 − Vk+i). Combined

with Vk+i − Vk+i−2 > Vk+i+2 − Vk+i, we get Vk+i+1 − Vk+i−1 − δ(1 − q)(Vk+i+2 − Vk+i) <

Vk+i − Vk+i−2 − δ(1− q)(Vk+i+1 − Vk+i−1).

By induction, we can show that Vk+i+1−Vk+i−1− δ(1− q)(Vk+i+2−Vk+i) < Vk+1−Vk−1−

δ(1 − q)(Vk+2 − Vk) = q(1−A)
1−p−q zk−1 + A(1 − zk−1). From the firm’s optimality condition at

state k + i and k + i+ 2, Vk+i+2 − Vk+i − δ(1− p)(Vk+i+1 − Vk−i+1) ≤ δp(Vk+i+3 − Vk+i+1) <

p(1−A+γ)
1−p−q . Sum the above two inequalities and use the fact that Vk+i+2− Vk+i >

1−A+γ
δ(1−p−q) and

Vk+i+1 − Vk+i−1 >
1−A+γ
δ(1−p−q) , we get zk−1 ≤ (1− 2(1−δ)(1−A)

δ(A(1−p)−q))(1 + γ
1−A). In all,

zk−1 ≤ max{1− 2(1− δ)(1− A)

δ(A(1− p)− q)
,
1− 1

δ
(1− Apq)
Apq

}(1 +
γ

1− A
).

However, the upper bound of zK−1 is less than the lower bound of zK−1, a contradiction.

Step 2: For any M + 1 ≤ i ≤ K − 2, if yi−1 = 1, then it is impossible that 0 < yi+1 < 1

and 0 < yi < 1.

Prove by contradiction. Assume that yi−1 = 1, 0 < yi+1 < 1 and 0 < yi < 1.

Case 1: 0 < yi−2 < 1.

Prove by contradiction and assume that 0 < yi+1 < 1, 0 < yi < 1. We can show that

zi+1 = (
1

δ

1− A
1− q − Ap

− δq)zi +
A(1− p− q)
1− q − Ap

(1 +
γ

1− A
) +

δq(A(1− p)− q)
1− q − Ap

zi−2.

By Assumption 3.1: 1−A
1−q−Ap − q > 0, it is true that 1

δ
1−A

1−q−Ap − δq > 0. Together with the

fact that zi > zi−2 ≥ δ(1 + γ/(1− A)), we have

zi+1

1 + γ
1−A

> (
1

δ

1− A
1− q − Ap

− δq)δ +
A(1− p− q)
1− q − Ap

+
δq(A(1− p)− q)

1− q − Ap
δ

=
(1− δ2q)(1− A)

1− q − Ap
+
A(1− p− q)
1− q − Ap

> 1,

a contradiction.
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Case 2: yi−2 = 1.

Assume that yt = 1 for j ≤ t ≤ i− 2 and 0 < yj−1 < 1. We can show that

Vi − Vi−2 − δq(Vi−1 − Vi−3) =
1− q

1− p− q
(1− A)zi − A(1− zi).

Vj+1 − Vj−1 − δ(1− q)(Vj+2 − Vj) =
q

1− p− q
(1− A)zj−1 + A(1− zj−1).

Vi−1 − Vi−3 − δ(1− q)(Vi − Vi−2) < Vj+1 − Vj−1 − δ(1− q)(Vj+2 − Vj).

Sum up the above three expressions and we get (1− δ(1− q))(Vi − Vi−2) + (1− δq)(Vi−1 −

Vi−3) < 1−A
1−p−qzi + ( q(1−A)

1−p−q − A)(zj−1 − zi). By Vi − Vi−2 < Vi−1 − Vi−3, we have Vi − Vi−2 <

1
2−δ (

1−A
1−p−qzi+( q(1−A)

1−p−q −A)(zj−1−zi)). By the firm’s optimality condition at state i and i+1,

zi+1 =
1

δ

1− A
1− q − pA

zi +
(1− p− q)A
1− q − Ap

zi−1 −
δq(1− p− q)
1− q − pA

(Vi − Vi−2).

zi+1 > (
1

δ

1− A
1− q − Ap

− δq

2− δ
)zi +

A(1− p− q)
1− q − Ap

(1 +
γ

1− A
) +

δq

2− δ
A(1− p)− q
1− q − Ap

zj−1.

By Assumption 3.1: 1−A
1−q−Ap − q > 0, it is true that 1

δ
1−A

1−q−Ap −
δq

2−δ > 0. Together with

zi > zj−1 ≥ δ(1 + γ
1−A), we have zi+1 > 1 + γ

1−A , a contradiction.

Step 3: Show that yi = 1 for any M ≤ i ≤ k − 2.

We know 0 < yk−1 < 1. Assume that 0 < yk−2 < 1. By Step 1, it is impossible that yi < 1

for all i ≤ k − 2, thus there exists i ≤ k − 3 such that yi = 1. Let i∗ be the largest one to

satisfy the above condition. Then, 0 < yi∗+1 < 1, 0 < yi∗+2 < 1 and yi∗ = 1, a contradiction

to Step 2.

In all, yk−2 = 1. By the definition of k, yi = 1 for any M ≤ i ≤ k − 2.

Step 4: There is an integer N and a sequence {ki}Ni=0 such that

(1) k0 = k − 1, kN ≤ K − 1 and ki > ki−1 + 1.

(2) For each M ≤ j ≤ K − 1, 0 < yj < 1 if and only if j ∈ {ki}Ni=0.

Define k0 = k − 1. Construct an increasing sequence {ki} as below. For each i ≥ 0, let

ki+1 be the smallest t ≥ ki + 1 such that 0 < yt < 1. Then, 0 < yki+1
< 1 and yki+1−1 = 1.

By step 2, yki+1+1 = 1. Therefore, ki+2 > ki+1 + 1. Together with Step 3, we get the result.

Step 5: Show that it is impossible to have more than d log(D)
log(x1)

+ 2e consecutive states in

which y(i) = 1 and a(i) > 0, where D is defined below.
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Prove by contradiction. Define n = i1−i0. For all i0 ≤ i ≤ i1, Vi = g1(1, 1)+δ(qVi−1 +(1−

q)Vi+1). Define Wi = Vi − Vi−2, then for all i0 + 1 ≤ i ≤ i1 − 1, Wi+1 = 1
δ(1−q)Wi − q

1−qWi−1.

Therefore, Wi = λ1x
i−i0
1 +λ2x

i−i0
2 , where x1 =

1−
√

1−4δ2q(1−q)
2δ(1−q) < 1 and x2 =

1+
√

1−4δ2q(1−q)
2δ(1−q) >

1. We can show that Wi > Wi+1, which implies that xn−1
1 >

(λ1x
n−1
1 +λ2x

n−1
2 )(x2−1)

λ1(x2−x1)
.

Next, figure out the upper bound of λ1. Assume that 0 < yi0−1 < 1, then yi0−1 ≥ δ.

Therefore, λ1 +λ2 = W (i0) = δ(1−q)W (i0 +1)+ q(1−A)
1−p−q yi0−1 +A(1−yi0−1) ≤ δ(1−q)(λ1x1 +

λ2x2) + q(1−A)δ
1−p−q +A(1− δ). Because λ2 > 0 and δ(1− q)x2− 1 < 0, then λ1 <

q(1−A)δ
1−p−q +A(1−δ)

1−δ(1−q)x1
.

By λ1x
n−1
1 + λ2x

n−1
2 > 1−A

δ(1−p−q) , then

xn−1
1 >

( 1−A
δ(1−p−q))(x2 − 1)

q(1−A)δ
1−p−q +A(1−δ)

1−δ(1−q)x1
(x2 − x1)

≡ D.

Therefore, n+ 1 < log(D)
log(x1)

+ 2.

Step 6: There exists ∆̄pq > 0 such that for all ∆ < ∆̄pq, N > Npq ≡ d
log( 2

2+δ
)

log(Apq)
e.

Assume that N ≤ Npq − 1. There are K − M − N − 1 states in which yi = 1 for

M ≤ i ≤ K − 1. Because there are N + 1 states in which yi < 1, then there exists a

sequence of consecutive states in which yi = 1 with the number at least K−M−N−1
N+2

. By Step

5, K−M−N−1
N+2

≤ log(D)
log(x1)

+ 2. Therefore,

K −M < (N + 2)(
log(D)

log(x1)
+ 3) < (

log( 2
2+δ

)

log(Apq)
+ 2)(

log(D)

log(x1)
+ 3).

a contradiction to ∆̄pq > 0 because lim∆→ LHS∆ > 0 = lim∆→RHS∆.

Step 7: Show that zki+1
> 2−δ

δ
(1 − Apq)(1 + γ

1−A) + Apqzki and zk0 ≥ δ(1 + γ
1−A). By

N > Npq, zkN > (2−δ
δ
− ANpq(2−δ

δ
− δ))(1 + γ

1−A) > 1 + γ
1−A , a contradiction.

Assume that yt = 1 for ki + 1 ≤ t ≤ ki+1 − 1 and yki , yki+1
∈ (0, 1). We can show that

Vki+1
− Vki+1−2 − δq(Vki+1−1 − Vki+1−3) =

1− q
1− p− q

(1− A)zki+1
− A(1− zki+1

).

Vki − Vki−2 − δ(1− q)(Vki+1 − Vki−1) =
q

1− p− q
(1− A)zki + A(1− zki).

Vki+1−1 − Vki+1−3 − δ(1− q)(Vki+1
− Vki+1−2) < Vki − Vki−2 − δ(1− q)(Vki+1 − Vki−1).

Sum up and we get (1− δ(1− q))(Vki+1
−Vki+1−2) + (1− δq)(Vki+1−1−Vki+1−3) < 1−A

1−p−qzki+1
+

( q(1−A)
1−p−q − A)(zki − zki+1

). By Vki+1
− Vki+1−2 ≥ 1

δ(1−p−q)(1 − A) and Vki+1−1 − Vki+1−3 ≥
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1
δ(1−p−q)(1 − A), we have zki+1

> 2−δ
δ

(1 − Apq)(1 + γ
1−A) + Apqzki . It is trivial that zk0 ≥

δ(1 + γ
1−A).

In all, we have shown that 0 < yi < 1 for any M ≤ i ≤ K− 1 and the firm does not invest

at state K. By Lemma A.5, the firm strictly prefers not to invest at all states t ≥ K. By

the similar argument as in Lemma A.3(1), we can show that for all M ≤ k ≤ K − 2,

zk+1 =
1

δ
(1− Apq)zk + Apqzk−1.

Next, we study the quasi-absorbing equilibrium. By Lemma A.1, there exists 0 ≤ K̄pq ≤

K − 1 such that if 0 ≤ k ≤ K − K̄pq − 1, then a(k∆) = y(k∆) = 0.

If k ≥ K − K̄pq, then yk > 0. Then, we treat state K − K̄pq as state 0 in Steps 1-8 and

get the same characterization as in the non-absorbing equilibrium.

�

Appendix B. Proofs for Section 3.2

Proof of Theorem 3.2:

Proof. Step 1: If ∆ → 0, then it is true that ∆ < ∆̄pq for any p, q ≥ 0. Therefore, for any

p and q, the equilibrium is characterized as in Theorem 3.1 and Theorem 3.2. By taking

∆ → 0 for the analytic solution of the equilibrium, we can show that there is a unique

limiting equilibrium.

Step 2: Take the limit ∆→ 0 and figure out y(X) and V (X), where y(X) = lim∆→0, k∆→X y(k∆)

and V (X) = lim∆→0, k∆→X V (k∆). Define z(X) = y(X) + γ
1−A .

First, we study the non-absorbing equilibrium (X∗ ≥ X̄pq).

For any state 0 < X < X∗, the firm is indifferent between NI and I: V (X) = (1 −

δ)g1(0, y(X)) + δ(pV (X+ ∆) + (1−p)V (X−∆)) = (1− δ)g1(1, y(X)) + δ(qV (X−∆) + (1−

q)V (X + ∆)). Let ∆→ 0, V ′(X) = r 1−A
1−2q+(1−2p)A

(V (X)− g1(0, 0) + γ
1−Ag1(0, 1)). Therefore,

V (X) = Cer
1−A

1−2q+(1−2p)A
X + g1(0, 0) − γ

1−Ag1(0, 1). Next, figure out the boundary condition

by relating V (X) to y(X) and using the fact that y(X∗) = 1. As (1 − δ)(g1(0, y(X)) −

g1(1, y(X))) = δ(1− p− q)(V (X + ∆)− V (X −∆)), z(X) = 2(1−p−q)
r(1−A)g1(0,1)

V ′(X) = C1e
1−A
1+A

rX .

By y(X∗) = 1, we get

z(X) = e−
1−A

1−2q+(1−2p)A
r(X∗−X)(1 +

γ

1− A
) ∀0 < X < X∗.
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Therefore, V ′(X) = r(1−A)g1(0,1)
2(1−p−q) e−

1−A
1−2q+(1−2p)A

r(X∗−X) for all 0 < X < X∗. Solve C by using

the above equation and V (X) = Ce
1−A
1+A

rX , then

V (X) = (
1− 2q + (1− 2p)A

2(1− p− q)
(1+

γ

1− A
)e−r

1−A
1−2q+(1−2p)A

(X∗−X)− γ

1− A
)g1(0, 1) ∀0 < X < X∗.

For X > X∗, V (X) = (1 − δ)g1(0, 1) + δ((1 − p)V (X − ∆) + pV (X + ∆)). Let ∆ → 0,

then (1− 2p)V ′(X) = r(g1(0, 1)−V (X)), thus V (X) = g1(0, 1)−C2e
− r

1−2p
X . By V (X∗−) =

V (X∗+), we get

V (X) =

(
1− (1− A)(1− 2p)

2(1− p− q)
(1 +

γ

1− A
)e−

r
1−2p

(X−X∗)

)
g1(0, 1) ∀X > X∗.

Next, we study the quasi-absorbing equilibrium (X∗ < X̄pq).

If X∗ − X̄pq < X < X∗, the result is the same as in the non-absorbing equilibrium.

If 0 < X < X∗ − X̄pq, then a(X) = y(X) = 0. Next, figure out V (X).

Consider all states 0 ≤ i ≤ I in the reputation absorbing state, where I = X∗−X̄pq
∆

. For

all 1 ≤ i ≤ I, V (i) = δ(pV (i + 1) + (1 − p)V (i − 1)). Then, V (i) = C1x
i
1 + C2x

i
2, where

x1 < 1 and x2 >
1−p
p

are two roots of x2 − 1
pδ
x + 1−p

p
= 0. If C2 6= 0, then V (i) will diverge

as ∆→ 0, a contradiction. Therefore, V (i) = C1x
i
1.

Assume by contradiction that V (0) 6= 0. By V (1)− V (0) = δp(V (2)− V (1)) and V (i) =

C1x
i
1, we get V (1) = 1

δp
V (0). By V (0) = δ(pV (1) + (1 − p)V (0)), V (1) = 1−δ+δp

δp
V (0), a

contradiction. Therefore, V0 = 0 and thus V (i) = 0 for any 1 ≤ i ≤ I. Therefore, in the

limit, V (X) = 0 for any 0 < X < X∗ − X̄pq.

Step 3: Determine X̄pq.

We have shown that V (X) = 0, for any 0 < X ≤ X∗ − X̄pq. By continuity of V (X) at

X∗ − X̄pq, V (X∗ − X̄pq) = 0. Therefore,

X̄pq =
1

r
log(

1− 2q + (1− 2p)A

2(1− p− q)
1− A+ γ

γ
)
1− 2q + (1− 2p)A

1− A
.

�

Proof of Corollary 3.3:

Proof. The only inequality that is not trivial is that ∂X̄pq
∂A

> 0.

In order to show that ∂X̄pq/∂A > 0, we only need

∂log(1−A+γ
γ

)1−2q+A(1−2p)
1−A

∂A
= log(

1− A+ γ

γ
)
2(1− p− q)

(1− A)2
− γ

1− A+ γ

1− 2q + A(1− 2p)

1− A
> 0,



STOCHASTIC REPUTATION CYCLES 39

which is equivalent to 1−A+γ
γ

log(1−A+γ
γ

) > (1−A)(1−2q+A(1−2p))
2(1−p−q) . Since 0 < γ < A and

1−A+γ
γ

log(1−A+γ
γ

) is decreasing in γ , then we only need to show the above inequality holds

if γ = A, which means that 1
A

log( 1
A

) > (1−A)(1−2q+(1−2p)A)
2(1−p−q) . Define f(x) = x log(x) −

(1−1/x)(1−2q+(1−2p)/x)
2(1−p−q) . We need to show that f(x) > 0 for all x > 1 since A < 1. Since

f(1) = 0, then f ′(x) = 1 + log(x) + q−p
(1−p−q)x2 − 1−2p

(1−p−q)x3 > 0 implies that f(x) > 0 for all

x > 1.

�

Appendix C. Proofs for Section 4.1

In this section, denote V (k∆), y(k∆) as Vk and yk. For notational convenience, we use

g1(a, y) instead of (1− δ)g1(a, y).

Lemma C.1: If the firm weakly prefers I in state k ≥ K and Vk ≥ Vk+1, then in each state

i = 0, 1, . . . , k− 1, we have (1) the firm weakly prefers I; (2) yi = yk = 1; and (3) Vi−1 ≥ Vi.

Proof. We know that yk = 1 for each t ≥ K. Assume, for induction, that, for i = k+1, . . . , t,

the three properties hold. Consider i = k. Prove (2) by contradiction, assume that yk <

yk+1 = 1.

Case 1: a(k∆) > a∗(k∆).

It is optimal for the buyers to choose B, so yk = 1, a contradiction.

Case 2: a(k∆) ≤ a∗(k∆).

Then, Vk = g1(0, yk) + δ((1 − p)V0 + pVk+1) ≥ g1(1, yk) + δ((1 − q)Vk+1 + qV0). By

submodularity, g1(0, yk)−g1(1, yk) < g1(0, 1)−g1(1, 1), thus g1(0, 1)+δ((1−p)V0 +pVk+1) >

g1(1, 1) + δ((1− q)Vk+1 + qV0). Therefore, Vk+1 = g1(0, 1) + δ((1− p)V0 + pVk+1) + δp(Vk+2−

Vk+1) > g1(1, 1) + δ((1− q)Vk+1 + qV0) + δp(Vk+2 − Vk+1) ≥ g1(1, 1) + δ((1− q)Vk+2 + qV0).

The last inequality uses the fact that Vk+1 ≥ Vk+2. Therefore, the firm strictly prefers NI in

state k+1, a contradiction. Therefore, we have proved (2). Then, (1) and (3) holds trivially.

�

Corollary C.1: For some t ≥ K, if Vt ≥ Vt+1, then the firm strictly prefers action NI in

state t ≥ K and a(t∆) = 0.

Proof. If the firm weakly prefers action I in state t ≥ K and Vt ≥ Vt+1, then by Lemma C.1,

yi = 1 for i = 1, 2, . . . , t − 1. It is obvious that yi = 1 for i ≥ t, because i ≥ t ≥ K. In all,
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yi = 1 for all state i ≥ 1. Therefore, the buyer’s strategy does not depend on the history of

the game. As a result, the firm would strictly prefer action NI, a contradiction. �

Lemma C.2: For some t ≥ K, if Vt < Vt+1, then the firm strictly prefers action NI in state

t ≥ K and a(t) = 0.

Proof. Assume that the firm weakly prefers I at t ≥ K and Vt < Vt+1.

Case 1: Vi < Vi+1 for all i ≥ t.

Then, {Vi}+∞
i=t is a strictly increasing and bounded sequence and assume the limit is V ∗.

Furthermore, for all i ≥ t, Vi = g1(1, 1) + δ((1 − q)Vi+1 + qV0). Let t → +∞, then for all

i ≥ t Vi < Vi+1 < V ∗ = g1(1,1)+δV0

1−δ+δq . As Vi = g1(1, 1) + δ((1− q)Vi+1 + qV0) > g1(1, 1) + δ((1−

q)Vi + qV0), then Vi >
g1(1,1)+δV0

1−δ+δq , a contradiction.

Case 2: Vi ≥ Vi+1 for some i > t.

Assume i∗ is the smallest i > t such that Vi ≥ Vi+1. Therefore, Vt < Vt+1 < . . . < Vi∗ .

If the firm weakly prefer I at i∗ and Vi∗ ≥ Vi∗+1, by Lemma C.1, we know that Vi ≥ Vi+1

for all i ≤ i∗, a contradiction to Vt < Vt+1.

If the firm strictly prefer NI at i∗, then Vi∗ = g1(0, 1) + δ((1− p)V0 + pVi∗+1) > g1(1, 1) +

δ((1 − q)Vi∗+1 + qV0). Because the firm weakly prefer I at t ≥ K, Vt = g1(1, 1) + δ((1 −

q)Vt+1 + qV0) ≥ g1(0, 1) + δ((1− p)V0 + pVt+1). Therefore, Vi∗+1 < Vt+1. Since Vt < Vi∗ , then

Vt+1 < Vi∗+1, a contradiction.

In all, we have shown that if Vt < Vt+1, then the firm strictly prefers action NI in state

t ≥ K and a(t∆) = 0.

�

Corollary C.2: The firm strictly prefers action NI in state t ≥ K and Vt = VK for all

t ≥ K.

Proof. By Corollary C.1 and Lemma C.2, the firm strictly prefers action NI in state t ≥ K.

Therefore, VK+1 − VK = (δp)n−1(VK+n − VK+n−1). As VK+n − VK+n−1 is bounded, then

VK+1 − VK = limn→+∞(δp)n−1(VK+n − VK+n−1) = 0. Therefore, for all t ≥ K, Vt = VK =

g1(0, 1) + δ((1− p)V0 + pVK). �

Lemma C.3: If for some j < K, yj+1 > 0, then yi is strictly increasing for all j ≤ i ≤ K.
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Proof. By Corollary C.2, we replace VK with VK+1 in the following proof. Firstly, show that

yK−1 < yK and VK−1 < VK .

If yK−1 = 0, then yK−1 < yK holds. Furthermore, VK−1 = g1(0, 0) + δ((1− p)V0 + pVK) <

g1(0, 1) + δ((1− p)V0 + pVK) = VK .

If yK−1 > 0, then a((K − 1)∆) ≥ a∗((K − 1)∆) > 0. Then, g1(1, yK−1) + δ((1 − q)VK +

qV0) ≥ g1(0, yK−1) + δ((1 − p)V0 + pVK). As the firm strictly prefers NI in state K, VK =

g1(0, yK) + δ((1 − p)V0 + pVK) > g1(1, yK) + δ((1 − q)VK + qV0). Sum up the above two

inequality, g1(0, yK)− g1(1, yK) > g1(0, yK−1)− g1(1, yK−1). By submodularity, yK−1 < yK .

Therefore, VK−1 = g1(1, yK−1) + δ((1− p)VK + pV0) ≤ g1(1, yK) + δ((1− q)VK + qV0) < VK .

In all, we have shown that yK−1 < yK and VK−1 < VK .

Prove by contradiction. Suppose that yi > 0 and yi ≤ yi−1. Let i∗ be the largest state

such that 0 < yi∗ ≤ yi∗−1. Since yi∗ < yi∗+1, yi∗ < 1. Therefore, a(i∗∆) = a∗(i∗∆) and

a((i∗− 1)∆) ≥ a∗((i∗− 1)∆). Furthermore, yi > 0 for any i ≥ i∗ means that a(i∆) ≥ a∗(i∆)

for any i ≥ i∗. Therefore, for any i ≥ i∗, we have

Vi = (g1(1, yi) + δqV0) + . . .+ (δ(1− q))K−i−1(g1(1, yK−2) + δqV0) + (δ(1− q))K−iVK−1.

Vi+1 = (g1(1, yi+1) + δqV0) + . . .+ (δ(1− q))K−i−1(g1(1, yK−1) + δqV0) + (δ(1− q))K−iVK .

VK−1 < VK implies that Vi < Vi+1 for all i ≥ i∗. Combined with the optimality condition at

i∗ and i∗ − 1, g1(0, yi∗−1)− g1(1, yi∗−1) ≤ δ(1− p− q)(Vi∗ − V0)< δ(1− p− q)(Vi∗+1 − V0) =

g1(0, yi∗)− g1(1, yi∗). By submodularity, yi∗−1 < yi∗ , a contradiction.

�

Lemma C.4: If δ > 1−A+γ
1−q−Ap , then 0 < yi < 1 and a(i∆) = a∗(i∆) for each i ≤ K − 1 and

{yi}Ki=0 is strictly increasing in i.

Proof. Step 1: y0 > 0.

Assume, by contradiction, that y0 = 0, then a(0) ≤ a∗(0) < 1. Therefore, V0 = g1(0, 0) +

δ((1 − p)V0 + pV1) ≥ g1(1, 0) + δ((1 − q)V1 + qV0). Then, V0 ≤ g1(0,0)
1−δ + p

1−p−q
g1(0,0)−g1(1,0)

1−δ .

Because δ > 1−A+γ
1−q−Ap and yK = 1, we can show that

g1(0, 1) + δ((1− p)V0 + p
g1(1, 1) + δV0

1− δ(1− q)
) <

g1(1, 1) + δV0

1− δ(1− q)
.
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Using the fact that VK > g1(1,1)+δV0

1−δ(1−q) , the above inequality implies that g1(0, 1)+δ((1−p)V0 +

pVK) < VK , a contradiction to the fact that the firm strictly prefers NI in state K.

Step 2: y1 > 0.

Next, assume, by contradiction, that y1 = 0. Then, a(∆) ≤ a∗(∆) < 1, so NI is an

optimal choice for the firm in state ∆. Therefore, V1 = g1(0, 0) + δ((1 − p)V0 + pV2) ≥

g1(1, 0) + δ((1− q)V2 + qV0). Then, V2 − V0 ≤ g1(0,0)−g1(1,0)
(1−p−q)δ .

y0 > 0 implies a(0) ≥ a∗(0) > 0, so I is an optimal choice for the firm in state 0. Therefore,

V1 − V0 ≥ g1(0,y0)−g1(1,y0)
(1−p−q)δ ≥ g1(0,0)−g1(1,0)

(1−p−q)δ ≥ V2 − V0. Then, V2 ≤ V1. Therefore,

V0 = g1(1, y0) + δ((1− q)V1 + qV0) ≤ g1(1, y0) + δV1

= g1(1, y0) + δg1(0, 0) + δ2((1− p)V0 + pV2) ≤ g1(1, y0) + δg1(0, 0) + δ2((1− p)V0 + pV1)

< g1(0, y0) + δg1(0, y0) + δ2((1− p)V0 + pV1) < g1(0, y0) + δV0 ≤ V0,

a contradiction.

By Lemma C.3, y1 > 0 implies that {yi}Ki=0 is strictly increasing in i. Therefore, yi > 0

for each i < K. Because yK = 1 and {yi}Ki=0 is strictly increasing in i, yi < 1 for each i < K.

Therefore, 0 < yi < 1 for each i < K implies that a(i∆) = a∗(i∆) for each i < K.

�

Proof of Theorem 4.1:

Proof. It is obvious that y(t) = 1 for each t ≥ K. By Corollary C.1, the firm strictly

prefers action NI in state t ≥ K. Then, we have proved (2). Lemma C.4 proved (1).

Then, let’s characterize yk for 0 ≤ k ≤ K − 1. The optimality condition at state k∆

is Vk = g1(0, yk) + δ((1 − p)V0 + pVk+1) = g1(1, yk) + δ((1 − q)Vk+1 + qV0). Therefore,

Vk+1 − V0 = g1(0,yk)−g1(1,yk)
δ(1−p−q) and Vk − V0 = g1(0, yk) − (1 − δ)V0 + δp(Vk+1 − V0). Together

with (1 − δ)V0 = g1(0, y0) + p
1−p−q (g1(0, y0) − g1(1, y0), the above two equations imply that

yk = η1yk−1 + y0 + η2, where η1 = 1−A
δ(1−q−pA)

, η2 = γ
δ(1−q−pA)

. Then, we can solve for yk for

0 ≤ k ≤ K − 1 by yK = 1. �

Proof of Proposition 4.2:

Proof. Because limk→+∞ y(k) = 1, then yk = η1yk−1 + y0 + η2 implies that y0 = 1− η1− η2 =

1− 1−A+γ
δ(1−q−pA)

. Therefore, for any k ≥ 0, yk = 1− (η1 + η2)ηk1 .
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Since ∂η1

∂q
> 0, ∂η1

∂p
> 0, ∂η2

∂q
> 0, ∂η2

∂p
> 0, then ∂y(k)

∂q
< 0, ∂y(k)

∂p
< 0. Since ∂η1

∂A
< 0, ∂η2

∂γ
> 0,

then ∂y(k)
∂A

> 0, ∂y(k)
∂γ

< 0. Since ∂η1

∂δ
< 0, ∂η2

∂δ
< 0, then ∂y(k)

∂δ
< 0, ∂y(k)

∂δ
< 0. �

Proof of Proposition 4.3:

Proof. Assume that y(0) > 0, then we have shown that in the limit case, y0 = 1− 1−A+γ
δ(1−q−pA)

. If

Assumption 4.2 is violated, then y0 ≤ 0, a contradiction. Therefore, y0 = 0 in the limit case.

Therefore, V1−V0 ≤ 1
δ(1−p−q)(g1(0, 0)−g1(1, 0)). Since yk∗ > 0, by Lemma C.3, we know that

0 < yk < 1 for all k∗ ≤ k ≤ K − 1. Therefore, Vk+1 − V0 = g1(0,yk)−g1(1,yk)
δ(1−p−q) and Vk+1 − V0 =

g1(0, yk+1)− (1− δ)V0 + δp(Vk+2− V0). Together with (1− δ)V0 = g1(0, 0) + δp(V1− V0), the

above two equations imply that for all k∗ ≤ k ≤ K − 1,

yk+1 =
1− A

δ(1− q − pA)
yk +

(1/δ − p)γ
1− q − pA

+
δp(1− p− q)
1− q − pA

V1 − V0

g1(0, 1)− g1(1, 1)
.

Prove by contradiction that K − k∗ → +∞ as K → +∞ , then 1−A
δ(1−q−pA)

< 1 and

limK−k∗→+∞ yk∗+i = 1, which implies that

1 =
1− A

δ(1− q − pA)
+

(1/δ − p)γ
1− q − pA

+
δp(1− p− q)
1− q − pA

V1 − V0

g1(0, 1)− g1(1, 1)
.

Together with V1 − V0 ≤ 1
δ(1−p−q)(g1(0, 0)− g1(1, 0)), we get 1−A+γ

(1−q−pA)
≥ δ, a contradiction to

1−A
δ(1−q−pA)

< 1.

�

Appendix D. Proofs for Section 4.2

In this section, for notational convenience, we use g1(a, y) instead of (1− δ)g1(a, y).

Lemma D.1 : Show that the buyers strictly prefer NI at all t ≥ K + 1.

Proof. Show that there are no two consecutive states t, t+ 1 ≥ K such that the firm weakly

prefers I. Prove by contradiction and assume that Vt = g1(1, 1) + δVt+1 ≥ g1(0, 1) + δVt−1

and Vt+1 = g1(1, 1) + δVt+2 ≥ g1(0, 1) + δVt. Then, Vt+2−Vt+1 = 1
δ
(Vt+1−Vt) > δ(Vt+1−Vt).

Therefore, Vt+2 = Vt+1 +(Vt+2−Vt+1) > g1(0, 1)+δVt+δ(Vt+1−Vt) = g1(0, 1)+δVt+1. Then,

Vt+2 = g1(1, 1)+δVt+3 > g1(0, 1)+δVt+1. By induction, for any i ≥ t, Vi = g1(1, 1)+δVi+1 ≥

g1(0, 1) + δVi−1. a contradiction.

If the buyer weakly prefers I at some t ≥ K + 1, then Vt+1 = g1(1, 1) + δVt+2 ≥ g1(0, 1) +

δVt. By the argument in the last paragraph, Vt = g1(0, 1) + δVt−1) > g1(1, 1) + δVt+1 and
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Vt+2 = g1(0, 1) + δVt+1 > g1(1, 1) + δVt+3. Therefore, 1
δ
(g1(0, 1) − g1(1, 1)) < Vt+2 − Vt =

δ(Vt+1 − Vt−1) < g1(0, 1)− g1(1, 1), a contradiction. �

Lemma D.2: If yk = 0, then yi = 0 for any 0 ≤ i ≤ k − 1.

Proof. If yk = 0, then Vk = 0. Because Vk−2 ≥ 0, g1(1, 1)+δVk < g1(0, 1)+δVk−2. Therefore,

the firm does not invest in state k − 1, then yk−1 = 0. By induction, yi = 0 for any

0 ≤ i ≤ k − 1.

�

Lemma D.3: For some 0 ≤ k ≤ K − 1, yk = 1 implies that yk+2i = 1 and yk+2i+1 ∈ (0, 1),

where i ≥ 0, k + 2i ≤ K − 1 and k + 2i + 1 ≤ K − 1. Furthermore, if k + 2i = K, then

VK = g1(1, 1) + δVK+1 > g1(0, 1) + δVK−1. If k + 2i+ 1 = K, then VK = g1(0, 1) + δVK−1 >

g1(1, 1) + δVK+1.

Proof. By Lemma D.2, yi > 0 for i ≥ k. Therefore, δ(Vi+1 − Vi−1) ≥ g1(0, 1) − g1(1, 1) for

all k ≤ i ≤ K. yk = 1 implies that Vk = g1(1, 1) + δVk+1 > g1(0, 1) + δVk−1.

Assume by contradiction that yk+2 ∈ (0, 1), then Vk+2 = δ(1− yk+2)Vk+2 + yk+2(g1(1, 1) +

δVk+3) < g1(1, 1) + δVk+3. Therefore, Vk+2 − Vk < δ(Vk+3 − Vk+1) = g1(0, 1) − g1(1, 1),

a contradiction to yk+1 > 0. In all, yk+2 = 1. By induction, yk+2i = 1, where i ≥ 0,

k + 2i ≤ K − 1.

If k + 2i = K, assume by contradiction that VK = g1(0, 1) + δVK−1. Then, by the fact

that VK−2 = g1(1, 1) + δVK−1, VK − VK−2 = g1(0, 1)− g1(1, 1), a contradiction to yK−1 > 0.

Thus, VK = g1(1, 1) + δVK+1 > g1(0, 1) + δVK−1.

Assume by contradiction that yk+1 = 1, then by the same argument as the last paragraph,

we get yk+3 = 1. By induction, yk+2i+1 = 1, where i ≥ 0, k + 2i + 1 ≤ K − 1. In all, yi = 1

for all k ≤ i ≤ K−1. Next, show that VK = g1(1, 1) + δVK+1 > g1(0, 1) + δVK−1. Otherwise,

VK = g1(0, 1)+δVK−1. Combined with VK−2 = g1(1, 1)+δVK−1, we get VK−VK−2 = g1(0, 1)−

g1(1, 1), a contradiction with yK−1 = 1. By Lemma D.1, VK+1 = g1(0, 1) + δVK . Combined

with VK−1 = g1(1, 1) + δVK , we get VK+1 − VK−1 = g1(0, 1) − g1(1, 1), a contradiction

with VK = g1(1, 1) + δVK+1 > g1(0, 1) + δVK−1. Therefore, yk+1 ∈ (0, 1). By induction,

yk+2i+1 ∈ (0, 1), where i ≥ 0, k + 2i+ 1 ≤ K − 1.

If k + 2i + 1 = K, assume by contradiction that VK = g1(1, 1) + δVK+1 ≥ g1(0, 1) +

δVK−1. By the fact that VK+1 = g1(0, 1) + δVK and VK−1 = g1(1, 1) + δVk, VK+1 − VK−1 =
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g1(0, 1) − g1(1, 1), a contradiction to VK = g1(1, 1) + δVK+1 ≥ g1(0, 1) + δVK−1. Thus,

VK = g1(0, 1) + δVK−1 > g1(1, 1) + δVK+1. �

Lemma D.4: If K ≥ K̂, then there is a unique quasi-absorbing equilibrium. Furthermore,

the necessary condition for the existence of quasi-absorbing equilibrium is K ≥ K̂, where

K̂ ≡ b1+A
1−A

δ
1−δ −

δ
1+δ
c+ 1.

Proof. Assume yk = 0 and yk+1 > 0, then by Lemma D.2, yi = 0 for all 0 ≤ i ≤ k and yi > 0

for all i ≥ k + 1.

Step 1: Show that in any quasi-absorbing equilibrium yi ∈ (0, 1) for 1 ≤ i ≤ K − 1.

Furthermore, the firm does not invest in state K.

Prove by contradiction, there exists k + 1 ≤ m ≤ K − 1 such that ym = 1. Assume

that m is the smallest integer that ym = 1. Therefore, (1) yi = 0 for all 0 ≤ i ≤ k; (2)

0 < yi < 1 for all k + 1 ≤ i ≤ m − 1; (3) ym = 1. By Lemma D.3, we also have (4)

ym+2i = 1 and ym+2i+1 ∈ (0, 1), where m+ 2i,m+ 2i+ 1 < K − 1; (5) If m+ 2i = K, then

VK = g1(1, 1) + δVK+1 > g1(0, 1) + δVK−1. If m+ 2i+ 1 = K, then VK = g1(0, 1) + δVK−1 >

g1(1, 1) + δVK+1.

Case 1: K −m is even.

By (5), VK = g1(1, 1) + δVK+1 ≥ g1(0, 1) + δVK−1. By Lemma D.1, VK+1 = g1(0, 1) + δVK .

Therefore, VK+1 = g1(0,1)+δg1(1,1)
1−δ2 and VK = g1(1,1)+δg1(0,1)

1−δ2 . Assume WLOG that g1(0, 1) = 1

and g1(1, 1) = A.

(1) K − k is even. By (2) + (4), VK−2i − VK−2i−2 = 1−A
δ

for 0 ≤ i ≤ K−k
2
− 1. Therefore, by

Vk = 0, we have VK = (K−k)(1−A)
2δ

. Then, K − k = 1+A
1−A

δ
1−δ −

δ
1+δ

, which is not generically

true since K − k is an integer number.

(2) K − k is odd. It is trivial to show that 1−A
δ

< Vm+1 − Vm−1 < 1−A
δ2 . By (2) and

(4) Vm−1 = (m−k−1)(1−A)
2δ

and Vm+1 = VK+1 − (K−m)(1−A)
2δ2 . Therefore, Vm+1 − Vm−1 =

VK+1 − (K−m)(1−A)
2δ2 − (m−k−1)(1−A)

2δ
. In all,

2δ

1− A
VK+1 −

(K −m)(1− δ)
δ

− 2(1− δ)
δ

< K − k + 1 <
2δ

1− A
VK+1 −

(K −m)(1− δ)
δ

,

which is not generically true for δ close to 1.

We have shown that yi ∈ (0, 1) for 1 ≤ i ≤ K − 1. If the firm weakly prefers to invest in

state K, then VK = g1(1, 1) + δVK+1 ≥ g1(0, 1) + δVK−1. By the same argument as above

and let m = K, we reach a contradiction. In all, the firm does not invest in state K.
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Case 2: K −m is odd.

Then, by (5), VK = g1(0, 1)+δVK−1 > g1(1, 1)+δVK+1. We also have VK−1 = g1(1, 1)+δVK .

Let K play the same role as K + 1 in Case 1, we reach a contradiction.

Step 2: If 0 < yi < 1 for 1 ≤ i ≤ K − 1, then K − k = K̂, where K̂ ≡ b1+A
1−A

δ
1−δ −

δ
1+δ
c+ 1.

We need to solve the following linear system: yk = Vk = 0,

Vi = (1− yi)δVi + yi(g1(1, 1) + δVi+1) = (1− yi)δVi + yi(g1(0, 1) + δVi−1) ∀k+ 1 ≤ i ≤ K − 1.

Vi = g1(0, 1) + δVi−1 > g1(1, 1) + δVi+1 ∀i ≥ K.

Solve the above equations: for 2i+ 1, 2i+ 2 ≤ K,

yk+2i+1 = yk+1 +
c1

δ
i, yk+2i =

c2

δ
i.

where c1 ≡ (1− δ + δy1)(1−A) and c2 ≡ (1−δ+δy1)(1−A)

A+
(1+A)δy1

1−δ
. The boundary condition is yK = 1.

Furthermore, we need g1(0, 1) + δVk > g1(1, 1) + δVk+1, which implies that yk+1 <
1−δ
δ

1−A
A

.

Case 1: K is an odd number.

Then we can solve yk+1 by backward induction. 1 = yK = yk+1 + c1
δ
K−k−1

2
implies that

(D.1) yk+1 =
2δ

1−A − (1− δ)(K − k − 1)

δ(K − k + 2
1−A − 1)

.

yK−1 ≤ 1 implies that c2
δ
K−k−1

2
≤ 1. Therefore, K − k ≤ 1+A

1−A
δ

1−δ + 1
1+δ

. The optimality

condition at state K: δ(V (K + 1) − V (K − 1)) < g1(0, 1) − g1(1, 1) implies that K − k >
1+A
1−A

δ
1−δ −

1
1+δ

. In all,

K − k = b1 + A

1− A
δ

1− δ
− 1

1 + δ
c+ 1.

Case 2: K is an even number.

Then, we can solve yk+1 by backward induction.

(D.2) yk+1 =
(1− δ)((K − k)(1− δ)− 2A

1−Aδ)
2(1+A)

1−A δ2 − (K − k)δ(1− δ)
.

yK−1 ≤ 1 implies that yk+1 + c1
δ
K−k−2

2
≤ 1. Therefore, K−k ≤ 1+A

1−A
δ

1−δ + δ
1+δ

. The optimality

condition at state K: δ(VK+1 − VK−1) < g1(0, 1) − g1(1, 1) implies K − k > 1+A
1−A

δ
1−δ −

δ
1+δ

.

In all,

K − k = b1 + A

1− A
δ

1− δ
− δ

1 + δ
c+ 1.
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Define K̂ as follows for δ close to 1:

K̂ ≡ b1 + A

1− A
δ

1− δ
− δ

1 + δ
c+ 1 = b1 + A

1− A
δ

1− δ
− 1

1 + δ
c+ 1.

Step 3: A necessary condition for the existence of a quasi-absorbing equilibrium is K ≥ K̂.

By Step 2, K − k = K̂, then k ≥ 0 implies that K ≥ K̂.

�

Lemma D.5: There is a unique non-absorbing equilibrium and the necessary condition for

the existence of non-absorbing equilibriumis K ≤ K̂ − 1.

Firstly, consider the case that K is even.

Step 1: VK = g1(0, 1) + δVK−1 > g1(1, 1) + δVK+1.

Prove by contradiction, then 0 < yK−1 < 1 and VK+1 = g1(0, 1) + δVK > g1(1, 1) + δVK+1

by Lemma D.1. Show by induction that yK−2i = 1 and yK−2i−1 ∈ (0, 1) for all 0 ≤ i ≤ K/2.

Assume that it is true for 0 ≤ i ≤ k. We need to show that yK−2k−2 = 1 and yK−2k−3 ∈ (0, 1).

yK−2k−2 ∈ (0, 1) implies 0 < yi < 1 for all 0 ≤ i ≤ K−2k−2 and thus VK−2k−2

yK−2k−2
= V0

y0
= g1(0,1)

1−δ .

By yK−2k = 1 and VK−2k = g1(1, 1) + δVK−2k+1, we can show that VK−2k >
VK−2k−2

yK−2k−2
= g1(0,1)

1−δ ,

a contradiction to g1(0, 1) is the firm’s highest stage-game payoff. Therefore, yK−2k−2 = 1.

Lemma D.3 tells us that yK−2k−1 ∈ (0, 1) implies yK−2k−3 ∈ (0, 1). In all, we show that

yK−2i = 1, which implies that y0 = 1 and V0 = g1(0,1)
1−δ . This is impossible because V1 > V0

will be higher than the highest possible continuation payoff for i ≥ 1.

Step 2: Figure out the equilibrium if K ≤ 2b δ2

1−δ2 c.

By Step 1 and Lemma D.3, yK−2 ∈ (0, 1). Show that yK−1 = 1. If 0 < yK−1 < 1, then 0 <

yk−2 < 1 for all k ≤ K and thus VK = V0

y0
= g1(0,1)

1−δ , then VK−1 = VK = g1(0,1)
1−δ , a contradiction

to the fact that VK−1 ≤ g1(1, 1)+δVK . In all, yK−1 = 1. Therefore, VK−1 = g1(1, 1)+δVK and

VK = g1(0,1)+δg1(1,1)
1−δ2 . Furthermore, VK−2

yK−2
= VK + g1(0,1)−g1(1,1)

δ
= g1(0,1)+δg1(1,1)

1−δ2 + g1(0,1)−g1(1,1)
δ

.

Show that if K ≤ 2b δ2

1−δ2 c, then yK−2i ∈ (0, 1) and yK−2i−1 = 1 for 0 ≤ i ≤ K/2.

Furthermore, VK−2i

yK−2i
= g1(0,1)+δg1(1,1)

1−δ2 + i(g1(0,1)−g1(1,1))
δ

. By induction, this is true for 0 ≤ i ≤ k.

We need to show that yK−2k−2 ∈ (0, 1) and yK−2k−3 = 1. By Lemma D.3, yK−2k ∈ (0, 1)

implies that yK−2k−2 ∈ (0, 1). Next, show that yK−2k−3 = 1. If 0 < yK−2k−3 < 1, then

0 < yi < 1 for all i ≤ K − 2k − 3. Then, VK−2k

yK−2k
= V (0)

y0
= g1(0,1)

1−δ . Because K ≤ 2[ δ2

1−δ2 ],

then for k ≤ K
2

, VK−2k

yK−2k
= g1(0,1)+δg1(1,1)

1−δ2 + k(g1(0,1)−g1(1,1))
δ

< g1(0,1)
1−δ , a contradiction. Therefore,

yK−2k−3 = 1 and VK−2k−2

yK−2k−2
= VK−2k

yK−2k
+ g1(0,1)−g1(1,1)

δ
= g1(0,1)+δg1(1,1)

1−δ2 + (k+1)(g1(0,1)−g1(1,1))
δ

.
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Because VK−2k+2 = g1(0,1)+δg1(1,1)
1−δ2 − (k−1)(g1(0,1)−g1(1,1))

δ2 = (g1(0,1)+δg1(1,1)
1−δ2 + i(g1(0,1)−g1(1,1))

δ
)yK−2k+2,

for any 1 ≤ k ≤ K
2

,

(D.3) yK−2k+2 =
δ2(1 + Aδ)− (1− δ2)(k − 1)(1− A)

δ2(1 + Aδ) + (1− δ2)δ(k − 1)(1− A)
.

Next, figure out y0. Because V0

y0
= g1(0,1)

1−δ and (1−δ)(V2

y2
− V0

y0
) = (g1(0, 1)−g1(1, 1))−δ(V2−V0),

y0 = (
1 + Aδ

1 + δ
− (1− A)(K − 2)(1− δ)

2δ2
) +

1− δ
δ

(
(1− A)(K − 2)(1− δ)

2δ
− (1− A)(1 + 2δ)

1 + δ
).

Step 3: Figure out the equilibrium if K ≥ 2b δ2

1−δ2 c+ 2.

Therefore, g1(0,1)+δg1(1,1)
1−δ2 + K(g1(0,1)−g1(1,1))

2δ
> g1(0,1)

1−δ . Denote k∗ < K
2

as the largest integer k

such that g1(0,1)+δg1(1,1)
1−δ2 + k(g1(0,1)−g1(1,1))

δ
< g1(0,1)

1−δ . Then, k∗ = b δ2

1−δ2 c. By the same argument

as in Step 2, for any 1 ≤ k ≤ k∗,

(D.4) yK−2k+2 =
δ2(1 + Aδ)− (1− δ2)(k − 1)(1− A)

δ2(1 + Aδ) + (1− δ2)δ(k − 1)(1− A)
, yK−2k+1 = 1.

Denote K̃ = K − 2k∗ − 2 = K − 2[ δ2

1−δ2 ]− 2.

(1) Show that yK̃+1 = 1. Assume by contradiction that 0 < yK̃+1 < 1, then 0 < yi < 1 and

Vi−1

yi−1
= Vi+1

yi+1
for all 0 ≤ i ≤ K̃+1. Specifically,

VK̃+2

yK̃+2
= V0

y0
= g1(0,1)

1−δ . Because VK̃+1 < g1(1, 1)+

δVK̃+2 and VK̃+3 = g1(1, 1) + δVK̃+4, then δ(VK̃+4 − VK̃+2) < VK̃+3 − VK̃+1 = g1(0,1)−g1(1,1)
δ

.

Furthermore, (1−δ)(VK̃+4

yK̃+4
− VK̃+2

yK̃+2
) = g1(0, 1)−g1(1, 1)−δ(VK̃+4−VK̃+2). Therefore, g1(0,1)

1−δ =
VK̃+2

yK̃+2
<

VK̃+4

yK̃+4
+ g1(0,1)−g1(1,1)

δ
= g1(0,1)+δg1(1,1)

1−δ2 + k∗(g1(0,1)−g1(1,1))
δ

, a contradiction to the definition

of k∗.

(2) Show that 0 < yi < 1 for all i ≤ K̃ − 1.

As yK̃+1 = 1, 0 < yK̃ < 1. If we assume yK̃−1 = 1, then
VK̃
yK̃

= g1(0,1)+δg1(1,1)
1−δ2 +

(k∗+1)(g1(0,1)−g1(1,1))
δ

> g1(0,1)
1−δ , a contradiction. Therefore, 0 < yK̃−1 < 1 and 0 < yK̃ < 1.

This implies that 0 < yi < 1 for all 0 ≤ i ≤ K̃ − 1.

(3) Solve for {yi}K̃−1
i=0 .

It is trivial that V0

y0
= g1(0,1)

1−δ . As y0, y1 ∈ (0, 1), then V1−V0 = V2−V0 = 1
δ
(g1(0, 1)−g1(1, 1)),

thus V2 = V1. Furthermore, V1 = δ(1 − y1)V1 + y1(g1(1, 1) + δV2), then V1

y1
= g1(1,1)

1−δ . In all,

for any 0 ≤ i ≤ K̃, V2i

y2i
= g1(0,1)

1−δ and V2i+1

y2t+1
= g1(1,1)

1−δ . Therefore, for any 0 ≤ i ≤ K̃,

(D.5) y2i = yK̃ +
(1− δ)(1− A)

2δ
(K̃ − 2i), y2i+1 = yK̃−1 +

(1− δ)(1− A)

2δA
(K̃ − 2i− 2).
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Figure out yK̃ . We know that
VK̃
yK̃

= g1(0,1)
1−δ and (1 − δ)(VK̃+2

yK̃+2
− VK̃

yK̃
) = g1(0, 1) − g1(1, 1) −

δ(VK̃+2 − VK̃). Furthermore, we know VK̃+2 and yK̃+2, then

yK̃ = (
1 + Aδ

1 + δ
−(1− A)(K − K̃ − 2)(1− δ)

2δ2
)+

1− δ
δ

(
(1− A)(K − K̃ − 2)(1− δ)

2δ
−(1− A)(1 + 2δ)

1 + δ
).

Step 4: Show that K ≤ K̂ + 1.

Because k∗ < δ2

1−δ2 and K − K̃ − 2 = 2k∗, then

yK̃ ≤ (
1 + Aδ

1 + δ
− (1− A)(K − K̃ − 2)(1− δ)

2δ2
)− (1− δ)(1− A)

δ
.

Furthermore, 0 ≤ y0 = yK̃ −
(1−δ)(1−A)

δ
K̃
2

implies that yK̃ ≥
(1−δ)(1−A)

δ
K̃
2

. We can show that

K < 1+A
1−A

δ
1−δ −

1−δ
1+δ

= K̂, thus K ≤ K̂ − 1.

Step 5: If K is odd, then denote K∗ = K + 1. It can be show that K∗ plays the same role

as K in previous steps in which K is even. In all, all the results in the previous steps hold

for K∗, if we denote K∗ = K + 1 if K is odd and K∗ = K if K is even.

Proof of Theorem 4.4:

Proof. If K ≥ K̂, then by Lemma D.5, the equilibrium is a quasi-absorbing equilibrium.

By lemma D.4, there is a unique quasi-absorbing equilibrium and the limiting equilibrium

is also characterized. In all, there is a unique stationary Markov equilibrium and it is a

quasi-absorbing equilibrium.

If K ≤ K̂ − 1, then by Lemma D.4, the equilibrium is a non-absorbing equilibrium. By

Lemma D.5, there is a unique non-absorbing equilibrium and the limiting equilibrium is

also characterized. In all, there is a unique stationary Markov equilibrium and it is a non-

absorbing equilibrium.

�

Proof of Proposition 4.5:

Proof. Define X̂ ≡ lim∆→0 K̂∆, X∗ ≡ lim∆→0K∆. Since K̂ ≡ b1+A
1−A

δ
1−δ −

δ
1+δ
c + 1, then

X̂ = 1+A
r(1−A)

. Therefore, K > X̂ is equivalent to X∗ > X̂.

Step 1: X∗ > X̂.
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Define X = lim∆→0 k∆, y(X) = lim∆→0 yk∆. Following Step 2 of Lemma D.4, by D.1 and

D.2,

(a(X), y(X)) =


(0, 0) 0 ≤ X ≤ X∗ − X̂.

(a∗(X), 1 + r(1−A)
1+A

(X −X∗)) X∗ − X̂ ≤ X ≤ X∗.

(0, 1) X ≥ X∗

Step 2: X∗ ≤ X̂ and X∗ ≤ 1
r
.

In the limit, K ≤ 2b δ2

1−δ2 c is equivalent to X∗ ≤ 1
r
. Following Step 2 of Lemma D.5, by

D.3, for all 0 ≤ X ≤ X∗,

(a(X), y(X)) =

 (1, 1) X = lim∆→0(2k + 1)∆.

(a∗(X), 1+A−r(1−A)(X∗−X)
1+A+r(1−A)(X∗−X)

) X = lim∆→0 2k∆.

Step 3: X∗ ≤ X̂ and X∗ > 1
r
.

In the limit, K > 2b δ2

1−δ2 c is equivalent to X∗ > 1
r
. We follow Step 3 of Lemma D.6. Define

X̃ = lim∆→0 K̃∆. Then, X̃ = X∗ − 1
r
. By D.4, for 0 ≤ X ≤ X∗ − 1

r
,

(a(X), y(X)) =

 (a∗(X), (1+A)−r(1−A)(X∗−X)
2A

) X = lim∆→0(2k + 1)∆.

(a∗(X), (1+A)−r(1−A)(X∗−X)
2

) X = lim∆→0 2k∆.

In the limit ∆→ 0, yK̃ → 1 and yK̃−1 = 1
A
y0 + (1−δ)(1−A)

δA
(K̃−1) =

yK̃
A

. Therefore, yK̃−1 → A.

By D.5, for X∗ − 1
r
< X ≤ X∗,

(a(X), y(X)) =

 (1, 1) X = lim∆→0(2k + 1)∆.

(a∗(X), 1+A−r(1−A)(X∗−X)
1+A+r(1−A)(X∗−X)

) X = lim∆→0 2k∆.

�

Appendix E. Proofs for Section 4.3

Proof of Theorem 4.6:

Proof. By Theorem 3.1 and Assumption 4.9, if the firm only has binary choices Ii∗ and I0,

then the stationary Markov equilibrium can be characterized by a reputation-building stage

0 < X < X∗ and a reputation-exploitation stage X ≥ X∗. Based on this equilibrium, we

construct an equilibrium if there are multiple investment choices.
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If 0 < X < X∗, we focus on equilibira in which the buyers play mixed strategies: y(X) ∈

(0, 1). Firstly, the firm will put a probability between 0 and 1 on I0. Otherwise, the buyers

will strictly prefer to buy: y(X) = 1, a contradiction. Secondly, by the definition of i∗,

(1 − δ)g1(Ii, B)y(X) + δ((1 − qi)V (X + 1) + qiV (X − 1)) < (1 − δ)g1(Ii∗ , B)y(X) + δ((1 −

qi∗)V (X + 1) + qi∗V (X − 1)) = (1 − δ)g1(I0, B)y(X) + δ((1 − q0)V (X + 1) + q0V (X − 1)).

Therefore, the firm only mixes between Ii∗ and I0.

If X ≥ X∗, then the buyers buy for sure: y(X) = 1. By the definition of i∗, (1 −

δ)g1(Ii, B) + δ((1 − qi)V (X + 1) + qiV (X − 1)) < (1 − δ)g1(Ii∗ , B) + δ((1 − qi)V (X + 1) +

qiV (X− 1)) < (1− δ)g1(I0, B)y(X) + δ((1− q0)V (X+ 1) + q0V (X− 1)). Therefore, the firm

plays I0 for sure at X ≥ X∗. �

References

[1] Board, S. and Meyer-ter-Vehn, M.(2013), Reputation for quality, Econometrica, Vol. 81, No. 6, 23812462.

[2] Bohren, A. (2011), Stochastic Games in Continuous Time: Persistent Actions in Long-Run Relationships,

Job Market Paper Issue 5, 345354.

[3] Camargo, B. and Pastorino, E.(2011), Career Concerns: A Human Capital Perspectives, Working paper.

[4] Cisternas, G. (2012), Shock Persistence, Endogenous Skills and Career Concerns, Working paper.

[5] Cripps, M. W., Mailath, G. J. and Samuelson L. (2007), Disappearing Private Reputations in Long-Run

Relationships, Journal of Economic Theory, 134(1), 287316.

[6] Dietz, Graham and Gillespie, Nicole (2012), The Recovery of Trust: Case studies of organizational failures

and trust repair, Occasional Paper 5, Institute of Business Ethics.

[7] Dilm, F. (2013), Building (and Milking) Trust: Reputation as a Moral Hazard Phenomenon, Job Market

Paper.

[8] Ekmekci, M. (2011), Sustainable reputations with rating systems, Journal of Economic Theory 146,

479503.

[9] Ekmekci, M., O. Gossner, and A.Wilson (2012), Impermanent Types and Permanent Reputations, Journal

of Economic Theory, 147(1), 162178.

[10] Fudenberg, D. and Yamamoto, Y. (2011), The folk theorem for irreducible stochastic games with imper-

fect public monitoring, Journal of Economic Theory, 146, 16641683. [131, 133]

[11] Halac, M. and Prat A. (2014), Managerial Attention and Worker Engagement, Working paper.

[12] Holmstrom, B. (1999), Managerial Incentive Problems: A Dynamic Perspective, Review of Economic

Studies 66(1), 169-182.

[13] Huang C., and Li, F. (2014), What We Talk about When We Talk about Mutual Fund’s Reputation,

Working paper.

[14] Huangfu, B. (2015a), Reputation Dynamics under Duopoly Competition, Working Paper.



52 BINGCHAO HUANGFU

[15] Huangfu, B. (2015b), Multi-dimensional Reputation in Stchastic Games, Working Paper.

[16] Jones, L. E. and R. Manuelli (1990), A Convex Model of Equilibrium Growth: Theory and Policy

Implications, Journal of Political Economy, Vol. 98, pp. 1008-1038.

[17] Kreps, M. David. and Wilson, Robert (1982), Reputation and Imperfect Information , Journal of Eco-

nomic Theory 27, 253-279.

[18] King, R. G. and S. Rebelo (1990), Public Policy and Economic Growth: Developing Neoclassical Impli-

cations, Journal of Political Economy, Vol. 98, pp. s126-s151.

[19] Levy, Y. and McLennan, A. (2015), Corrigendum to: “Discounted Stochastic Games with No Stationary

Nash Equilibrium: Two Examples”, Econometrica (forthcoming).

[20] Liu, Q. (2011) Information acquisition and reputation dynamics, The Review of Economic Studies 78

(4), 1400-1425.

[21] Liu, Q. and Skrzypacz, A.(2014), Limited Records and Reputation Bubbles, Journal of Economic Theory,

2014.

[22] Mailath, G. J. and L. Samuelson (2001), Who Wants a Good Reputation? Review of Economic Studies,

68(2), 41541.

[23] Milgrom, Paul and Roberts, John (1982), Limit Pricing and Entry under Incomplete Information: An

Equilibrium Analysis, Econometrica, Vol. 50, No 2, 443-460.

[24] Monte, D. (2013), Bounded memory and permanent reputations, Journal of Mathematical Economics,

Volume 49, Issue 5, 345354.
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